假设我有一个df,它的列是" ID " " col_1 " " col_2 "我定义了一个函数:

F = x, y: my_function_expression。

现在我想应用f到df的两个列'col_1', 'col_2'来逐个元素计算一个新列'col_3',有点像:

df['col_3'] = df[['col_1','col_2']].apply(f)  
# Pandas gives : TypeError: ('<lambda>() takes exactly 2 arguments (1 given)'

怎么办?

**添加详细示例如下***

import pandas as pd

df = pd.DataFrame({'ID':['1','2','3'], 'col_1': [0,2,3], 'col_2':[1,4,5]})
mylist = ['a','b','c','d','e','f']

def get_sublist(sta,end):
    return mylist[sta:end+1]

#df['col_3'] = df[['col_1','col_2']].apply(get_sublist,axis=1)
# expect above to output df as below 

  ID  col_1  col_2            col_3
0  1      0      1       ['a', 'b']
1  2      2      4  ['c', 'd', 'e']
2  3      3      5  ['d', 'e', 'f']

当前回答

一个简单的解决方案是:

df['col_3'] = df[['col_1','col_2']].apply(lambda x: f(*x), axis=1)

其他回答

有两种简单的方法: 比方说,我们想在名为col_sum的输出列中求col1和col2的和

方法1

f = lambda x : x.col1 + x.col2
df['col_sum'] = df.apply(f, axis=1)

方法2

def f(x):
    x['col_sum'] = x.col_1 + col_2
    return x
df = df.apply(f, axis=1)

当一些复杂的函数必须应用到数据帧时,应该使用方法2。当需要多列输出时,也可以使用方法2。

一个有趣的问题!我的回答如下:

import pandas as pd

def sublst(row):
    return lst[row['J1']:row['J2']]

df = pd.DataFrame({'ID':['1','2','3'], 'J1': [0,2,3], 'J2':[1,4,5]})
print df
lst = ['a','b','c','d','e','f']

df['J3'] = df.apply(sublst,axis=1)
print df

输出:

  ID  J1  J2
0  1   0   1
1  2   2   4
2  3   3   5
  ID  J1  J2      J3
0  1   0   1     [a]
1  2   2   4  [c, d]
2  3   3   5  [d, e]

我将列名更改为ID,J1,J2,J3,以确保ID < J1 < J2 < J3,因此列以正确的顺序显示。

再简单说一下:

import pandas as pd

df = pd.DataFrame({'ID':['1','2','3'], 'J1': [0,2,3], 'J2':[1,4,5]})
print df
lst = ['a','b','c','d','e','f']

df['J3'] = df.apply(lambda row:lst[row['J1']:row['J2']],axis=1)
print df

如果你有一个巨大的数据集,那么你可以使用一种简单但更快(执行时间)的方式来做到这一点,使用swifter:

import pandas as pd
import swifter

def fnc(m,x,c):
    return m*x+c

df = pd.DataFrame({"m": [1,2,3,4,5,6], "c": [1,1,1,1,1,1], "x":[5,3,6,2,6,1]})
df["y"] = df.swifter.apply(lambda x: fnc(x.m, x.x, x.c), axis=1)

你写f的方法需要两个输入。如果你看一下错误消息,它说你没有为f提供两个输入,只有一个。错误信息是正确的。 不匹配是因为df[['col1','col2']]返回一个有两列的数据帧,而不是两个独立的列。

你需要改变你的f,让它只接受一个输入,保持上面的数据帧作为输入,然后在函数体中把它分解成x,y。然后执行所需的操作并返回一个值。

你需要这个函数签名,因为语法是。apply(f) f需要取一个= dataframe的东西,而不是当前f所期望的两个东西。

由于你没有提供f的主体,我不能提供更多的细节-但这应该提供了出路,而不需要从根本上改变你的代码或使用一些其他方法而不是应用

在Pandas中有一个简单的方法:

df['col_3'] = df.apply(lambda x: f(x.col_1, x.col_2), axis=1)

这允许f是一个用户定义的具有多个输入值的函数,并使用(安全的)列名而不是(不安全的)数字索引来访问列。

数据示例(基于原始问题):

import pandas as pd

df = pd.DataFrame({'ID':['1', '2', '3'], 'col_1': [0, 2, 3], 'col_2':[1, 4, 5]})
mylist = ['a', 'b', 'c', 'd', 'e', 'f']

def get_sublist(sta,end):
    return mylist[sta:end+1]

df['col_3'] = df.apply(lambda x: get_sublist(x.col_1, x.col_2), axis=1)

打印输出(df):

  ID  col_1  col_2      col_3
0  1      0      1     [a, b]
1  2      2      4  [c, d, e]
2  3      3      5  [d, e, f]

如果你的列名包含空格或与现有的dataframe属性共享一个名称,你可以用方括号索引:

df['col_3'] = df.apply(lambda x: f(x['col 1'], x['col 2']), axis=1)