在创建NumPy数组后,并将其保存为Django上下文变量,我在加载网页时收到以下错误:
array([ 0, 239, 479, 717, 952, 1192, 1432, 1667], dtype=int64) is not JSON serializable
这是什么意思?
在创建NumPy数组后,并将其保存为Django上下文变量,我在加载网页时收到以下错误:
array([ 0, 239, 479, 717, 952, 1192, 1432, 1667], dtype=int64) is not JSON serializable
这是什么意思?
当前回答
如果你在字典中嵌套了numpy数组,我发现了最好的解决方案:
import json
import numpy as np
class NumpyEncoder(json.JSONEncoder):
""" Special json encoder for numpy types """
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
return json.JSONEncoder.default(self, obj)
dumped = json.dumps(data, cls=NumpyEncoder)
with open(path, 'w') as f:
json.dump(dumped, f)
多亏了这个家伙。
其他回答
你可以使用Pandas:
import pandas as pd
pd.Series(your_array).to_json(orient='values')
我有一个类似的问题,嵌套字典与一些numpy。ndarray在里面。
def jsonify(data):
json_data = dict()
for key, value in data.iteritems():
if isinstance(value, list): # for lists
value = [ jsonify(item) if isinstance(item, dict) else item for item in value ]
if isinstance(value, dict): # for nested lists
value = jsonify(value)
if isinstance(key, int): # if key is integer: > to string
key = str(key)
if type(value).__module__=='numpy': # if value is numpy.*: > to python list
value = value.tolist()
json_data[key] = value
return json_data
你也可以使用default参数,例如:
def myconverter(o):
if isinstance(o, np.float32):
return float(o)
json.dump(data, default=myconverter)
如果其他人的代码(例如模块)正在执行json.dumps(),其他答案将不起作用。这种情况经常发生,例如,web服务器自动将其返回响应转换为JSON,这意味着我们不能总是更改JSON .dump()的参数。 这个答案解决了这个问题,并且基于一个(相对)新的解决方案,适用于任何第三方类(不仅仅是numpy)。
TLDR
PIP安装json_fix
import json_fix # import this anytime before the JSON.dumps gets called
import json
# create a converter
import numpy
json.fallback_table[numpy.ndarray] = lambda array: array.tolist()
# no additional arguments needed:
json.dumps(
dict(thing=10, nested_data=numpy.array((1,2,3)))
)
#>>> '{"thing": 10, "nested_data": [1, 2, 3]}'
默认情况下不支持这一点,但是您可以很容易地让它工作!如果你想要返回完全相同的数据,有几个东西你需要编码:
数据本身,您可以通过obj.tolist()获得,如@travelingbones所述。有时这可能已经足够好了。 数据类型。我觉得这在很多情况下很重要。 维度(不一定是2D),如果你假设输入确实总是一个“矩形”网格,可以从上面得到。 内存顺序(行或列为主)。这通常并不重要,但有时很重要(例如性能),所以为什么不保存所有内容呢?
此外,你的numpy数组可以是你的数据结构的一部分,例如,你有一个包含一些矩阵的列表。为此,你可以使用一个自定义编码器,基本上做上述。
这应该足以实现解决方案。或者你可以使用json-tricks,它可以做到这一点(并支持各种其他类型)(免责声明:是我做的)。
pip install json-tricks
Then
data = [
arange(0, 10, 1, dtype=int).reshape((2, 5)),
datetime(year=2017, month=1, day=19, hour=23, minute=00, second=00),
1 + 2j,
Decimal(42),
Fraction(1, 3),
MyTestCls(s='ub', dct={'7': 7}), # see later
set(range(7)),
]
# Encode with metadata to preserve types when decoding
print(dumps(data))