在创建NumPy数组后,并将其保存为Django上下文变量,我在加载网页时收到以下错误:
array([ 0, 239, 479, 717, 952, 1192, 1432, 1667], dtype=int64) is not JSON serializable
这是什么意思?
在创建NumPy数组后,并将其保存为Django上下文变量,我在加载网页时收到以下错误:
array([ 0, 239, 479, 717, 952, 1192, 1432, 1667], dtype=int64) is not JSON serializable
这是什么意思?
当前回答
可以做简单的for循环检查类型:
with open("jsondontdoit.json", 'w') as fp:
for key in bests.keys():
if type(bests[key]) == np.ndarray:
bests[key] = bests[key].tolist()
continue
for idx in bests[key]:
if type(bests[key][idx]) == np.ndarray:
bests[key][idx] = bests[key][idx].tolist()
json.dump(bests, fp)
fp.close()
其他回答
我经常“jsonify”np.arrays。首先尝试在数组上使用".tolist()"方法,如下所示:
import numpy as np
import codecs, json
a = np.arange(10).reshape(2,5) # a 2 by 5 array
b = a.tolist() # nested lists with same data, indices
file_path = "/path.json" ## your path variable
json.dump(b, codecs.open(file_path, 'w', encoding='utf-8'),
separators=(',', ':'),
sort_keys=True,
indent=4) ### this saves the array in .json format
为了“unjsonify”数组使用:
obj_text = codecs.open(file_path, 'r', encoding='utf-8').read()
b_new = json.loads(obj_text)
a_new = np.array(b_new)
你可以使用Pandas:
import pandas as pd
pd.Series(your_array).to_json(orient='values')
TypeError: array([[0.46872085, 0.67374235, 1.0218339, 0.13210179, 0.5440686, 0.9140083, 0.58720225, 0.2199381]], dtype=float32)不是JSON可序列化的
当我试图将数据列表传递给model.predict()时抛出了上述错误,当我期待json格式的响应时。
> 1 json_file = open('model.json','r')
> 2 loaded_model_json = json_file.read()
> 3 json_file.close()
> 4 loaded_model = model_from_json(loaded_model_json)
> 5 #load weights into new model
> 6 loaded_model.load_weights("model.h5")
> 7 loaded_model.compile(optimizer='adam', loss='mean_squared_error')
> 8 X = [[874,12450,678,0.922500,0.113569]]
> 9 d = pd.DataFrame(X)
> 10 prediction = loaded_model.predict(d)
> 11 return jsonify(prediction)
但幸运的是找到了提示来解决抛出的错误 对象的序列化仅适用于以下转换 映射应该以以下方式进行 Object - dict Array - list 字符串-字符串 整数-整数
如果你向上滚动到第10行 forecast = loaded_model.predict(d)这行代码生成输出的位置 类型数组数据类型,当你试图转换数组json格式它是不可能的
最后,我发现解决方案只是通过转换获得的输出到类型列表由 以下代码行
预测= loaded_model.predict(d) Listtype = predict .tolist() 返回jsonify (listtype)
Bhoom !最终得到了预期的产量,
存储为JSON一个numpy。Ndarray或任何嵌套列表组合。
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
return json.JSONEncoder.default(self, obj)
a = np.array([[1, 2, 3], [4, 5, 6]])
print(a.shape)
json_dump = json.dumps({'a': a, 'aa': [2, (2, 3, 4), a], 'bb': [2]},
cls=NumpyEncoder)
print(json_dump)
将输出:
(2, 3)
{"a": [[1, 2, 3], [4, 5, 6]], "aa": [2, [2, 3, 4], [[1, 2, 3], [4, 5, 6]]], "bb": [2]}
从JSON中恢复:
json_load = json.loads(json_dump)
a_restored = np.asarray(json_load["a"])
print(a_restored)
print(a_restored.shape)
将输出:
[[1 2 3]
[4 5 6]]
(2, 3)
如果其他人的代码(例如模块)正在执行json.dumps(),其他答案将不起作用。这种情况经常发生,例如,web服务器自动将其返回响应转换为JSON,这意味着我们不能总是更改JSON .dump()的参数。 这个答案解决了这个问题,并且基于一个(相对)新的解决方案,适用于任何第三方类(不仅仅是numpy)。
TLDR
PIP安装json_fix
import json_fix # import this anytime before the JSON.dumps gets called
import json
# create a converter
import numpy
json.fallback_table[numpy.ndarray] = lambda array: array.tolist()
# no additional arguments needed:
json.dumps(
dict(thing=10, nested_data=numpy.array((1,2,3)))
)
#>>> '{"thing": 10, "nested_data": [1, 2, 3]}'