在创建NumPy数组后,并将其保存为Django上下文变量,我在加载网页时收到以下错误:

array([   0,  239,  479,  717,  952, 1192, 1432, 1667], dtype=int64) is not JSON serializable

这是什么意思?


当前回答

如果其他人的代码(例如模块)正在执行json.dumps(),其他答案将不起作用。这种情况经常发生,例如,web服务器自动将其返回响应转换为JSON,这意味着我们不能总是更改JSON .dump()的参数。 这个答案解决了这个问题,并且基于一个(相对)新的解决方案,适用于任何第三方类(不仅仅是numpy)。

TLDR

PIP安装json_fix

import json_fix # import this anytime before the JSON.dumps gets called
import json

# create a converter
import numpy
json.fallback_table[numpy.ndarray] = lambda array: array.tolist()

# no additional arguments needed: 
json.dumps(
   dict(thing=10, nested_data=numpy.array((1,2,3)))
)
#>>> '{"thing": 10, "nested_data": [1, 2, 3]}'

其他回答

我经常“jsonify”np.arrays。首先尝试在数组上使用".tolist()"方法,如下所示:

import numpy as np
import codecs, json 

a = np.arange(10).reshape(2,5) # a 2 by 5 array
b = a.tolist() # nested lists with same data, indices
file_path = "/path.json" ## your path variable
json.dump(b, codecs.open(file_path, 'w', encoding='utf-8'), 
          separators=(',', ':'), 
          sort_keys=True, 
          indent=4) ### this saves the array in .json format

为了“unjsonify”数组使用:

obj_text = codecs.open(file_path, 'r', encoding='utf-8').read()
b_new = json.loads(obj_text)
a_new = np.array(b_new)

如果你在字典中嵌套了numpy数组,我发现了最好的解决方案:

import json
import numpy as np

class NumpyEncoder(json.JSONEncoder):
    """ Special json encoder for numpy types """
    def default(self, obj):
        if isinstance(obj, np.integer):
            return int(obj)
        elif isinstance(obj, np.floating):
            return float(obj)
        elif isinstance(obj, np.ndarray):
            return obj.tolist()
        return json.JSONEncoder.default(self, obj)

dumped = json.dumps(data, cls=NumpyEncoder)

with open(path, 'w') as f:
    json.dump(dumped, f)

多亏了这个家伙。

使用json。转储默认kwarg:

Default应该是一个函数,用于无法序列化的对象. ...或引发TypeError

在默认函数中检查对象是否来自模块numpy,如果是,则使用ndarray。对ndarray使用列表,对任何其他numpy特定类型使用.item。

import numpy as np

def default(obj):
    if type(obj).__module__ == np.__name__:
        if isinstance(obj, np.ndarray):
            return obj.tolist()
        else:
            return obj.item()
    raise TypeError('Unknown type:', type(obj))

dumped = json.dumps(data, default=default)

你可以使用Pandas:

import pandas as pd
pd.Series(your_array).to_json(orient='values')

默认情况下不支持这一点,但是您可以很容易地让它工作!如果你想要返回完全相同的数据,有几个东西你需要编码:

数据本身,您可以通过obj.tolist()获得,如@travelingbones所述。有时这可能已经足够好了。 数据类型。我觉得这在很多情况下很重要。 维度(不一定是2D),如果你假设输入确实总是一个“矩形”网格,可以从上面得到。 内存顺序(行或列为主)。这通常并不重要,但有时很重要(例如性能),所以为什么不保存所有内容呢?

此外,你的numpy数组可以是你的数据结构的一部分,例如,你有一个包含一些矩阵的列表。为此,你可以使用一个自定义编码器,基本上做上述。

这应该足以实现解决方案。或者你可以使用json-tricks,它可以做到这一点(并支持各种其他类型)(免责声明:是我做的)。

pip install json-tricks

Then

data = [
    arange(0, 10, 1, dtype=int).reshape((2, 5)),
    datetime(year=2017, month=1, day=19, hour=23, minute=00, second=00),
    1 + 2j,
    Decimal(42),
    Fraction(1, 3),
    MyTestCls(s='ub', dct={'7': 7}),  # see later
    set(range(7)),
]
# Encode with metadata to preserve types when decoding
print(dumps(data))