我想将我的自定义函数(它使用if-else阶梯)应用到这六列(ERI_Hispanic, ERI_AmerInd_AKNatv, ERI_Asian, ERI_Black_Afr。Amer, ERI_HI_PacIsl, ERI_White)在我的数据帧的每一行。
I've tried different methods from other questions but still can't seem to find the right answer for my problem. The critical piece of this is that if the person is counted as Hispanic they can't be counted as anything else. Even if they have a "1" in another ethnicity column they still are counted as Hispanic not two or more races. Similarly, if the sum of all the ERI columns is greater than 1 they are counted as two or more races and can't be counted as a unique ethnicity(except for Hispanic).
这几乎就像对每一行进行for循环,如果每个记录满足一个条件,它们就被添加到一个列表中,并从原始列表中删除。
从下面的数据框架中,我需要根据SQL中的以下规范计算一个新列:
标准
IF [ERI_Hispanic] = 1 THEN RETURN “Hispanic”
ELSE IF SUM([ERI_AmerInd_AKNatv] + [ERI_Asian] + [ERI_Black_Afr.Amer] + [ERI_HI_PacIsl] + [ERI_White]) > 1 THEN RETURN “Two or More”
ELSE IF [ERI_AmerInd_AKNatv] = 1 THEN RETURN “A/I AK Native”
ELSE IF [ERI_Asian] = 1 THEN RETURN “Asian”
ELSE IF [ERI_Black_Afr.Amer] = 1 THEN RETURN “Black/AA”
ELSE IF [ERI_HI_PacIsl] = 1 THEN RETURN “Haw/Pac Isl.”
ELSE IF [ERI_White] = 1 THEN RETURN “White”
备注:如果西班牙裔的ERI标志为真(1),则该员工被归类为“西班牙裔”
备注:如果多于1个非西班牙ERI Flag为真,返回" Two or more "
DATAFRAME
lname fname rno_cd eri_afr_amer eri_asian eri_hawaiian eri_hispanic eri_nat_amer eri_white rno_defined
0 MOST JEFF E 0 0 0 0 0 1 White
1 CRUISE TOM E 0 0 0 1 0 0 White
2 DEPP JOHNNY 0 0 0 0 0 1 Unknown
3 DICAP LEO 0 0 0 0 0 1 Unknown
4 BRANDO MARLON E 0 0 0 0 0 0 White
5 HANKS TOM 0 0 0 0 0 1 Unknown
6 DENIRO ROBERT E 0 1 0 0 0 1 White
7 PACINO AL E 0 0 0 0 0 1 White
8 WILLIAMS ROBIN E 0 0 1 0 0 0 White
9 EASTWOOD CLINT E 0 0 0 0 0 1 White
因为这是'pandas new column from others'的第一个谷歌结果,这里有一个简单的例子:
import pandas as pd
# make a simple dataframe
df = pd.DataFrame({'a':[1,2], 'b':[3,4]})
df
# a b
# 0 1 3
# 1 2 4
# create an unattached column with an index
df.apply(lambda row: row.a + row.b, axis=1)
# 0 4
# 1 6
# do same but attach it to the dataframe
df['c'] = df.apply(lambda row: row.a + row.b, axis=1)
df
# a b c
# 0 1 3 4
# 1 2 4 6
如果你得到SettingWithCopyWarning,你也可以这样做:
fn = lambda row: row.a + row.b # define a function for the new column
col = df.apply(fn, axis=1) # get column data with an index
df = df.assign(c=col.values) # assign values to column 'c'
来源:https://stackoverflow.com/a/12555510/243392
如果你的列名包含空格,你可以使用这样的语法:
df = df.assign(**{'some column name': col.values})
这是apply和assign的文档。
因为这是'pandas new column from others'的第一个谷歌结果,这里有一个简单的例子:
import pandas as pd
# make a simple dataframe
df = pd.DataFrame({'a':[1,2], 'b':[3,4]})
df
# a b
# 0 1 3
# 1 2 4
# create an unattached column with an index
df.apply(lambda row: row.a + row.b, axis=1)
# 0 4
# 1 6
# do same but attach it to the dataframe
df['c'] = df.apply(lambda row: row.a + row.b, axis=1)
df
# a b c
# 0 1 3 4
# 1 2 4 6
如果你得到SettingWithCopyWarning,你也可以这样做:
fn = lambda row: row.a + row.b # define a function for the new column
col = df.apply(fn, axis=1) # get column data with an index
df = df.assign(c=col.values) # assign values to column 'c'
来源:https://stackoverflow.com/a/12555510/243392
如果你的列名包含空格,你可以使用这样的语法:
df = df.assign(**{'some column name': col.values})
这是apply和assign的文档。
正如@user3483203所指出的,numpy。选择是最好的方法
将条件语句和相应的操作存储在两个列表中
conds = [(df['eri_hispanic'] == 1),(df[['eri_afr_amer', 'eri_asian', 'eri_hawaiian', 'eri_nat_amer', 'eri_white']].sum(1).gt(1)),(df['eri_nat_amer'] == 1),(df['eri_asian'] == 1),(df['eri_afr_amer'] == 1),(df['eri_hawaiian'] == 1),(df['eri_white'] == 1,])
actions = ['Hispanic', 'Two Or More', 'A/I AK Native', 'Asian', 'Black/AA', 'Haw/Pac Isl.', 'White']
你现在可以使用np。选择使用这些列表作为参数
df['label_race'] = np.select(conds,actions,default='Other')
参考:https://numpy.org/doc/stable/reference/generated/numpy.select.html
还有另一种(易于推广的)方法,其基础是pandas.DataFrame.idxmax。首先,易于概括的序言。
# Indeed, all your conditions boils down to the following
_gt_1_key = 'two_or_more'
_lt_1_key = 'other'
# The "dictionary-based" if-else statements
labels = {
_gt_1_key : 'Two Or More',
'eri_hispanic': 'Hispanic',
'eri_nat_amer': 'A/I AK Native',
'eri_asian' : 'Asian',
'eri_afr_amer': 'Black/AA',
'eri_hawaiian': 'Haw/Pac Isl.',
'eri_white' : 'White',
_lt_1_key : 'Other',
}
# The output-driving 1-0 matrix
mat = df.filter(regex='^eri_').copy() # `~.copy` to avoid `SettingWithCopyWarning`
... 最后,以向量化的方式:
mat[_gt_1_key] = gt1 = mat.sum(axis=1)
mat[_lt_1_key] = gt1.eq(0).astype(int)
race_label = mat.idxmax(axis=1).map(labels)
在哪里
>>> race_label
0 White
1 Hispanic
2 White
3 White
4 Other
5 White
6 Two Or More
7 White
8 Haw/Pac Isl.
9 White
dtype: object
那是一只熊猫。您可以轻松地在df中托管系列实例,即df['race_label'] = race_label。
试试这个,
df.loc[df['eri_white']==1,'race_label'] = 'White'
df.loc[df['eri_hawaiian']==1,'race_label'] = 'Haw/Pac Isl.'
df.loc[df['eri_afr_amer']==1,'race_label'] = 'Black/AA'
df.loc[df['eri_asian']==1,'race_label'] = 'Asian'
df.loc[df['eri_nat_amer']==1,'race_label'] = 'A/I AK Native'
df.loc[(df['eri_afr_amer'] + df['eri_asian'] + df['eri_hawaiian'] + df['eri_nat_amer'] + df['eri_white']) > 1,'race_label'] = 'Two Or More'
df.loc[df['eri_hispanic']==1,'race_label'] = 'Hispanic'
df['race_label'].fillna('Other', inplace=True)
O/P:
lname fname rno_cd eri_afr_amer eri_asian eri_hawaiian \
0 MOST JEFF E 0 0 0
1 CRUISE TOM E 0 0 0
2 DEPP JOHNNY NaN 0 0 0
3 DICAP LEO NaN 0 0 0
4 BRANDO MARLON E 0 0 0
5 HANKS TOM NaN 0 0 0
6 DENIRO ROBERT E 0 1 0
7 PACINO AL E 0 0 0
8 WILLIAMS ROBIN E 0 0 1
9 EASTWOOD CLINT E 0 0 0
eri_hispanic eri_nat_amer eri_white rno_defined race_label
0 0 0 1 White White
1 1 0 0 White Hispanic
2 0 0 1 Unknown White
3 0 0 1 Unknown White
4 0 0 0 White Other
5 0 0 1 Unknown White
6 0 0 1 White Two Or More
7 0 0 1 White White
8 0 0 0 White Haw/Pac Isl.
9 0 0 1 White White
使用.loc代替apply。
它改进了向量化。
.loc的工作方式很简单,根据条件屏蔽行,对冻结行应用值。
欲了解更多细节,请访问。loc文档
性能指标:
答:接受
def label_race (row):
if row['eri_hispanic'] == 1 :
return 'Hispanic'
if row['eri_afr_amer'] + row['eri_asian'] + row['eri_hawaiian'] + row['eri_nat_amer'] + row['eri_white'] > 1 :
return 'Two Or More'
if row['eri_nat_amer'] == 1 :
return 'A/I AK Native'
if row['eri_asian'] == 1:
return 'Asian'
if row['eri_afr_amer'] == 1:
return 'Black/AA'
if row['eri_hawaiian'] == 1:
return 'Haw/Pac Isl.'
if row['eri_white'] == 1:
return 'White'
return 'Other'
df=pd.read_csv('dataser.csv')
df = pd.concat([df]*1000)
%timeit df.apply(lambda row: label_race(row), axis=1)
每循环1.15 s±46.5 ms(平均±标准值7次运行,每循环1次)
我建议的答案:
def label_race(df):
df.loc[df['eri_white']==1,'race_label'] = 'White'
df.loc[df['eri_hawaiian']==1,'race_label'] = 'Haw/Pac Isl.'
df.loc[df['eri_afr_amer']==1,'race_label'] = 'Black/AA'
df.loc[df['eri_asian']==1,'race_label'] = 'Asian'
df.loc[df['eri_nat_amer']==1,'race_label'] = 'A/I AK Native'
df.loc[(df['eri_afr_amer'] + df['eri_asian'] + df['eri_hawaiian'] + df['eri_nat_amer'] + df['eri_white']) > 1,'race_label'] = 'Two Or More'
df.loc[df['eri_hispanic']==1,'race_label'] = 'Hispanic'
df['race_label'].fillna('Other', inplace=True)
df=pd.read_csv('s22.csv')
df = pd.concat([df]*1000)
%timeit label_race(df)
每循环24.7 ms±1.7 ms(平均±标准值7次运行,每循环10次)
好的,这有两个步骤——第一步是写一个函数来做你想要的转换——我已经根据你的伪代码把一个例子放在一起了:
def label_race (row):
if row['eri_hispanic'] == 1 :
return 'Hispanic'
if row['eri_afr_amer'] + row['eri_asian'] + row['eri_hawaiian'] + row['eri_nat_amer'] + row['eri_white'] > 1 :
return 'Two Or More'
if row['eri_nat_amer'] == 1 :
return 'A/I AK Native'
if row['eri_asian'] == 1:
return 'Asian'
if row['eri_afr_amer'] == 1:
return 'Black/AA'
if row['eri_hawaiian'] == 1:
return 'Haw/Pac Isl.'
if row['eri_white'] == 1:
return 'White'
return 'Other'
您可能想要回顾一下这一点,但它似乎做到了这一点——注意,进入函数的参数被认为是一个标记为“row”的Series对象。
接下来,使用pandas中的apply函数来应用该函数。
df.apply (lambda row: label_race(row), axis=1)
请注意axis=1说明符,这意味着应用程序是在行级别而不是列级别上完成的。结果如下:
0 White
1 Hispanic
2 White
3 White
4 Other
5 White
6 Two Or More
7 White
8 Haw/Pac Isl.
9 White
如果您对这些结果感到满意,那么再次运行它,将结果保存到原始数据框架中的一个新列中。
df['race_label'] = df.apply (lambda row: label_race(row), axis=1)
生成的数据框架是这样的(向右滚动可以看到新列):
lname fname rno_cd eri_afr_amer eri_asian eri_hawaiian eri_hispanic eri_nat_amer eri_white rno_defined race_label
0 MOST JEFF E 0 0 0 0 0 1 White White
1 CRUISE TOM E 0 0 0 1 0 0 White Hispanic
2 DEPP JOHNNY NaN 0 0 0 0 0 1 Unknown White
3 DICAP LEO NaN 0 0 0 0 0 1 Unknown White
4 BRANDO MARLON E 0 0 0 0 0 0 White Other
5 HANKS TOM NaN 0 0 0 0 0 1 Unknown White
6 DENIRO ROBERT E 0 1 0 0 0 1 White Two Or More
7 PACINO AL E 0 0 0 0 0 1 White White
8 WILLIAMS ROBIN E 0 0 1 0 0 0 White Haw/Pac Isl.
9 EASTWOOD CLINT E 0 0 0 0 0 1 White White