很明显,泛型HashSet<T>类的搜索性能要高于泛型List<T>类。只需将基于哈希的键与List<T>类中的线性方法进行比较。

然而,计算哈希键本身可能需要一些CPU周期,因此对于少量的项,线性搜索可以成为HashSet<T>的真正替代方法。

我的问题是:盈亏平衡在哪里?

为了简化场景(公平起见),让我们假设List<T>类使用元素的Equals()方法来标识一个项。


当前回答

盈亏平衡将取决于计算散列的成本。哈希计算可以是微不足道的,或者不是…:-)总有System.Collections.Specialized.HybridDictionary类帮助你不必担心盈亏平衡点。

其他回答

You're looking at this wrong. Yes a linear search of a List will beat a HashSet for a small number of items. But the performance difference usually doesn't matter for collections that small. It's generally the large collections you have to worry about, and that's where you think in terms of Big-O. However, if you've measured a real bottleneck on HashSet performance, then you can try to create a hybrid List/HashSet, but you'll do that by conducting lots of empirical performance tests - not asking questions on SO.

使用HashSet<>还是List<>取决于您需要如何访问您的集合。如果你需要保证项目的顺序,使用一个列表。如果没有,请使用HashSet。让微软去担心他们的哈希算法和对象的实现吧。

HashSet将访问项目而不必枚举集合(复杂度为O(1)或接近它),并且由于List保证顺序,与HashSet不同,一些项目将必须被枚举(复杂度为O(n))。

这取决于很多因素……列表实现,CPU架构,JVM,循环语义,equals方法的复杂性,等等…当列表变得足够大,可以有效地进行基准测试(1000多个元素)时,基于哈希的二进制查找就可以轻松地击败线性搜索,并且差异只会在此基础上扩大。

希望这能有所帮助!

我只是想用一些不同场景的基准来说明前面的答案:

一些(12 - 20)小字符串(长度在5到10个字符之间) 许多(~10K)小字符串 一些长字符串(长度在200到1000个字符之间) 许多(~5K)长字符串 几个整数 许多(~10K)整数

对于每个场景,查找出现的值:

在列表的开头("start",索引0) 靠近列表开头("early", index 1) 在列表的中间("middle",索引计数/2) 接近列表末尾("late", index count-2) 在列表的末尾("end", index count-1)

在每个场景之前,我生成随机大小的随机字符串列表,然后将每个列表提供给一个哈希集。每个场景运行了10,000次,基本上是:

(测试伪代码)

stopwatch.start
for X times
    exists = list.Contains(lookup);
stopwatch.stop

stopwatch.start
for X times
    exists = hashset.Contains(lookup);
stopwatch.stop

样例输出

在Windows 7上测试,12GB Ram, 64位,Xeon 2.8GHz

---------- Testing few small strings ------------
Sample items: (16 total)
vgnwaloqf diwfpxbv tdcdc grfch icsjwk
...

Benchmarks:
1: hashset: late -- 100.00 % -- [Elapsed: 0.0018398 sec]
2: hashset: middle -- 104.19 % -- [Elapsed: 0.0019169 sec]
3: hashset: end -- 108.21 % -- [Elapsed: 0.0019908 sec]
4: list: early -- 144.62 % -- [Elapsed: 0.0026607 sec]
5: hashset: start -- 174.32 % -- [Elapsed: 0.0032071 sec]
6: list: middle -- 187.72 % -- [Elapsed: 0.0034536 sec]
7: list: late -- 192.66 % -- [Elapsed: 0.0035446 sec]
8: list: end -- 215.42 % -- [Elapsed: 0.0039633 sec]
9: hashset: early -- 217.95 % -- [Elapsed: 0.0040098 sec]
10: list: start -- 576.55 % -- [Elapsed: 0.0106073 sec]


---------- Testing many small strings ------------
Sample items: (10346 total)
dmnowa yshtrxorj vthjk okrxegip vwpoltck
...

Benchmarks:
1: hashset: end -- 100.00 % -- [Elapsed: 0.0017443 sec]
2: hashset: late -- 102.91 % -- [Elapsed: 0.0017951 sec]
3: hashset: middle -- 106.23 % -- [Elapsed: 0.0018529 sec]
4: list: early -- 107.49 % -- [Elapsed: 0.0018749 sec]
5: list: start -- 126.23 % -- [Elapsed: 0.0022018 sec]
6: hashset: early -- 134.11 % -- [Elapsed: 0.0023393 sec]
7: hashset: start -- 372.09 % -- [Elapsed: 0.0064903 sec]
8: list: middle -- 48,593.79 % -- [Elapsed: 0.8476214 sec]
9: list: end -- 99,020.73 % -- [Elapsed: 1.7272186 sec]
10: list: late -- 99,089.36 % -- [Elapsed: 1.7284155 sec]


---------- Testing few long strings ------------
Sample items: (19 total)
hidfymjyjtffcjmlcaoivbylakmqgoiowbgxpyhnrreodxyleehkhsofjqenyrrtlphbcnvdrbqdvji...
...

Benchmarks:
1: list: early -- 100.00 % -- [Elapsed: 0.0018266 sec]
2: list: start -- 115.76 % -- [Elapsed: 0.0021144 sec]
3: list: middle -- 143.44 % -- [Elapsed: 0.0026201 sec]
4: list: late -- 190.05 % -- [Elapsed: 0.0034715 sec]
5: list: end -- 193.78 % -- [Elapsed: 0.0035395 sec]
6: hashset: early -- 215.00 % -- [Elapsed: 0.0039271 sec]
7: hashset: end -- 248.47 % -- [Elapsed: 0.0045386 sec]
8: hashset: start -- 298.04 % -- [Elapsed: 0.005444 sec]
9: hashset: middle -- 325.63 % -- [Elapsed: 0.005948 sec]
10: hashset: late -- 431.62 % -- [Elapsed: 0.0078839 sec]


---------- Testing many long strings ------------
Sample items: (5000 total)
yrpjccgxjbketcpmnvyqvghhlnjblhgimybdygumtijtrwaromwrajlsjhxoselbucqualmhbmwnvnpnm
...

Benchmarks:
1: list: early -- 100.00 % -- [Elapsed: 0.0016211 sec]
2: list: start -- 132.73 % -- [Elapsed: 0.0021517 sec]
3: hashset: start -- 231.26 % -- [Elapsed: 0.003749 sec]
4: hashset: end -- 368.74 % -- [Elapsed: 0.0059776 sec]
5: hashset: middle -- 385.50 % -- [Elapsed: 0.0062493 sec]
6: hashset: late -- 406.23 % -- [Elapsed: 0.0065854 sec]
7: hashset: early -- 421.34 % -- [Elapsed: 0.0068304 sec]
8: list: middle -- 18,619.12 % -- [Elapsed: 0.3018345 sec]
9: list: end -- 40,942.82 % -- [Elapsed: 0.663724 sec]
10: list: late -- 41,188.19 % -- [Elapsed: 0.6677017 sec]


---------- Testing few ints ------------
Sample items: (16 total)
7266092 60668895 159021363 216428460 28007724
...

Benchmarks:
1: hashset: early -- 100.00 % -- [Elapsed: 0.0016211 sec]
2: hashset: end -- 100.45 % -- [Elapsed: 0.0016284 sec]
3: list: early -- 101.83 % -- [Elapsed: 0.0016507 sec]
4: hashset: late -- 108.95 % -- [Elapsed: 0.0017662 sec]
5: hashset: middle -- 112.29 % -- [Elapsed: 0.0018204 sec]
6: hashset: start -- 120.33 % -- [Elapsed: 0.0019506 sec]
7: list: late -- 134.45 % -- [Elapsed: 0.0021795 sec]
8: list: start -- 136.43 % -- [Elapsed: 0.0022117 sec]
9: list: end -- 169.77 % -- [Elapsed: 0.0027522 sec]
10: list: middle -- 237.94 % -- [Elapsed: 0.0038573 sec]


---------- Testing many ints ------------
Sample items: (10357 total)
370826556 569127161 101235820 792075135 270823009
...

Benchmarks:
1: list: early -- 100.00 % -- [Elapsed: 0.0015132 sec]
2: hashset: end -- 101.79 % -- [Elapsed: 0.0015403 sec]
3: hashset: early -- 102.08 % -- [Elapsed: 0.0015446 sec]
4: hashset: middle -- 103.21 % -- [Elapsed: 0.0015618 sec]
5: hashset: late -- 104.26 % -- [Elapsed: 0.0015776 sec]
6: list: start -- 126.78 % -- [Elapsed: 0.0019184 sec]
7: hashset: start -- 130.91 % -- [Elapsed: 0.0019809 sec]
8: list: middle -- 16,497.89 % -- [Elapsed: 0.2496461 sec]
9: list: end -- 32,715.52 % -- [Elapsed: 0.4950512 sec]
10: list: late -- 33,698.87 % -- [Elapsed: 0.5099313 sec]

视情况而定。如果确切的答案真的很重要,那就做一些分析,找出答案。如果你确定你永远不会有超过一定数量的元素在集合中,使用List。如果数字是无界的,则使用HashSet。