是否有一种方法可以在交互或脚本执行模式下扩大输出的显示?

具体来说,我在Pandas DataFrame上使用了describe()函数。当DataFrame是五列(标签)宽时,我得到了我想要的描述性统计数据。然而,如果DataFrame有更多的列,统计数据将被抑制,并返回如下内容:

>> Index: 8 entries, count to max
>> Data columns:
>> x1          8  non-null values
>> x2          8  non-null values
>> x3          8  non-null values
>> x4          8  non-null values
>> x5          8  non-null values
>> x6          8  non-null values
>> x7          8  non-null values

无论有6列还是7列,都给出“8”值。“8”指什么?

我已经尝试过将IDLE窗口拖大,以及增加“配置IDLE”宽度选项,但无济于事。


当前回答

您可以使用print df.describe().to_string()强制它显示整个表。你可以像这样对任何数据帧使用to_string()。description的结果只是一个DataFrame本身。)

8是DataFrame中包含“description”的行数(因为describe计算8个统计值,最小值,最大值,平均值等)。

其他回答

你可以设置输出显示来匹配你当前的终端宽度:

pd.set_option('display.width', pd.util.terminal.get_terminal_size()[0])

您可以使用print df.describe().to_string()强制它显示整个表。你可以像这样对任何数据帧使用to_string()。description的结果只是一个DataFrame本身。)

8是DataFrame中包含“description”的行数(因为describe计算8个统计值,最小值,最大值,平均值等)。

这不是严格意义上的答案,但是让我们记住我们可以df.describe().transpose()或者df.head(n).transpose(),或者df.tail(n).transpose()。

我还发现,当标题是结构化的时,将它们作为列来阅读更容易:

header1_xxx,

header2_xxx,

header3_xxx,

我认为终端和应用程序处理垂直滚动更自然,如果这是必要的转置后。

标头通常比它们的值大,将它们全部放在一列(索引)中可以最大限度地减少它们对总表宽度的影响。

最后,其他的df描述也可以合并,这里有一个可能的想法:

def df_overview(df: pd.DataFrame, max_colwidth=25, head=3, tail=3):
    return(
        df.describe([0.5]).transpose()
        .merge(df.dtypes.rename('dtypes'), left_index=True, right_index=True)
        .merge(df.head(head).transpose(), left_index=True, right_index=True)
        .merge(df.tail(tail).transpose(), left_index=True, right_index=True)
        .to_string(max_colwidth=max_colwidth, float_format=lambda x: "{:.4G}".format(x))
    )

当数据规模很大时,我使用这些设置。

# Environment settings: 
pd.set_option('display.max_column', None)
pd.set_option('display.max_rows', None)
pd.set_option('display.max_seq_items', None)
pd.set_option('display.max_colwidth', 500)
pd.set_option('expand_frame_repr', True)

您可以在这里参考文档。

这些答案对我都没用。其中一些确实会打印所有列,但看起来会很草率。所有的信息都在那里,但格式不正确。我正在使用Neovim内部的终端,所以我怀疑这是原因。

这个迷你函数确实是我需要的,只是改变df_data在两个地方,它是为你的dataframe名称(col_range被设置为熊猫自然显示,对我来说是5,但它可以更大或更小为你)。

import math
col_range = 5
for _ in range(int(math.ceil(len(df_data.columns)/col_range))):
    idx1 = _*col_range
    idx2 = idx1+col_range
    print(df_data.iloc[:, idx1:idx2].describe())