我想要一种从选定的列名直接生成列标签的通用方法,并且记得python的psycopg2模块支持这一特性。


当前回答

我也曾经面临过类似的问题。我用一个简单的技巧来解决这个问题。 假设您在一个列表中有这样的列名

col_name = ['a', 'b', 'c']

然后你就可以跟着做了

for row in cursor.fetchone():
    print zip(col_name, row)

其他回答

我也曾经面临过类似的问题。我用一个简单的技巧来解决这个问题。 假设您在一个列表中有这样的列名

col_name = ['a', 'b', 'c']

然后你就可以跟着做了

for row in cursor.fetchone():
    print zip(col_name, row)

如果你想从db查询中获得一个命名元组obj,你可以使用下面的代码片段:

from collections import namedtuple

def create_record(obj, fields):
    ''' given obj from db returns named tuple with fields mapped to values '''
    Record = namedtuple("Record", fields)
    mappings = dict(zip(fields, obj))
    return Record(**mappings)

cur.execute("Select * FROM people")
colnames = [desc[0] for desc in cur.description]
rows = cur.fetchall()
cur.close()
result = []
for row in rows:
    result.append(create_record(row, colnames))

这允许您访问记录值,如果他们是类属性,即。

记录。id、记录。other_table_column_name等等。

或者更短

from psycopg2.extras import NamedTupleCursor
with cursor(cursor_factory=NamedTupleCursor) as cur:
   cur.execute("Select * ...")
   return cur.fetchall()
#!/usr/bin/python
import psycopg2
#note that we have to import the Psycopg2 extras library!
import psycopg2.extras
import sys

def main():
    conn_string = "host='localhost' dbname='my_database' user='postgres' password='secret'"
    # print the connection string we will use to connect
    print "Connecting to database\n ->%s" % (conn_string)

    # get a connection, if a connect cannot be made an exception will be raised here
    conn = psycopg2.connect(conn_string)

    # conn.cursor will return a cursor object, you can use this query to perform queries
    # note that in this example we pass a cursor_factory argument that will
    # dictionary cursor so COLUMNS will be returned as a dictionary so we
    # can access columns by their name instead of index.
    cursor = conn.cursor(cursor_factory=psycopg2.extras.DictCursor)

    # tell postgres to use more work memory
    work_mem = 2048

    # by passing a tuple as the 2nd argument to the execution function our
    # %s string variable will get replaced with the order of variables in
    # the list. In this case there is only 1 variable.
    # Note that in python you specify a tuple with one item in it by placing
    # a comma after the first variable and surrounding it in parentheses.
    cursor.execute('SET work_mem TO %s', (work_mem,))

    # Then we get the work memory we just set -> we know we only want the
    # first ROW so we call fetchone.
    # then we use bracket access to get the FIRST value.
    # Note that even though we've returned the columns by name we can still
    # access columns by numeric index as well - which is really nice.
    cursor.execute('SHOW work_mem')

    # Call fetchone - which will fetch the first row returned from the
    # database.
    memory = cursor.fetchone()

    # access the column by numeric index:
    # even though we enabled columns by name I'm showing you this to
    # show that you can still access columns by index and iterate over them.
    print "Value: ", memory[0]

    # print the entire row 
    print "Row: ", memory

if __name__ == "__main__":
    main()

我注意到你必须在查询后使用cursor.fetchone()来获取cursor.description中的列列表(即在[desc[0] for desc in curs.description])

要在单独的查询中获得列名,可以查询information_schema。表列。

#!/usr/bin/env python3

import psycopg2

if __name__ == '__main__':
  DSN = 'host=YOUR_DATABASE_HOST port=YOUR_DATABASE_PORT dbname=YOUR_DATABASE_NAME user=YOUR_DATABASE_USER'

  column_names = []

  with psycopg2.connect(DSN) as connection:
      with connection.cursor() as cursor:
          cursor.execute("select column_name from information_schema.columns where table_schema = 'YOUR_SCHEMA_NAME' and table_name='YOUR_TABLE_NAME'")
          column_names = [row[0] for row in cursor]

  print("Column names: {}\n".format(column_names))

要在相同的查询中获取列名作为数据行,您可以使用游标的description字段:

#!/usr/bin/env python3

import psycopg2

if __name__ == '__main__':
  DSN = 'host=YOUR_DATABASE_HOST port=YOUR_DATABASE_PORT dbname=YOUR_DATABASE_NAME user=YOUR_DATABASE_USER'

  column_names = []
  data_rows = []

  with psycopg2.connect(DSN) as connection:
    with connection.cursor() as cursor:
      cursor.execute("select field1, field2, fieldn from table1")
      column_names = [desc[0] for desc in cursor.description]
      for row in cursor:
        data_rows.append(row)

  print("Column names: {}\n".format(column_names))