如何以最有效的内存和时间方式获取大文件的行数?
def file_len(filename):
with open(filename) as f:
for i, _ in enumerate(f):
pass
return i + 1
如何以最有效的内存和时间方式获取大文件的行数?
def file_len(filename):
with open(filename) as f:
for i, _ in enumerate(f):
pass
return i + 1
当前回答
与此答案类似的一行bash解决方案,使用了现代子进程。check_output功能:
def line_count(filename):
return int(subprocess.check_output(['wc', '-l', filename]).split()[0])
其他回答
大文件的另一种选择是使用xreadlines():
count = 0
for line in open(thefilepath).xreadlines( ): count += 1
对于Python 3,请参阅:在Python 3中什么替代xreadlines() ?
这个呢
def file_len(fname):
counts = itertools.count()
with open(fname) as f:
for _ in f: counts.next()
return counts.next()
为什么不读取前100行和后100行,然后估计平均行长,然后用这些数字除以总文件大小呢?如果你不需要一个确切的值,这可以工作。
这是我用纯python发现的最快的东西。 你可以通过设置buffer来使用任意大小的内存,不过在我的电脑上2**16似乎是一个最佳位置。
from functools import partial
buffer=2**16
with open(myfile) as f:
print sum(x.count('\n') for x in iter(partial(f.read,buffer), ''))
我在这里找到了答案为什么在c++中从stdin读取行要比Python慢得多?稍微调整了一下。这是一个非常好的阅读来理解如何快速计数行,尽管wc -l仍然比其他任何方法快75%。
下面这句话怎么样:
file_length = len(open('myfile.txt','r').read().split('\n'))
用这种方法在一个3900行的文件上计时只需要0.003秒
def c():
import time
s = time.time()
file_length = len(open('myfile.txt','r').read().split('\n'))
print time.time() - s