如何以最有效的内存和时间方式获取大文件的行数?

def file_len(filename):
    with open(filename) as f:
        for i, _ in enumerate(f):
            pass
    return i + 1

当前回答

一行,可能很快:

num_lines = sum(1 for line in open('myfile.txt'))

其他回答

我相信内存映射文件将是最快的解决方案。我尝试了四个函数:由OP发布的函数(opcount);对文件中的行进行简单迭代(simplecount);带有内存映射字段(mmap)的Readline (mapcount);以及Mykola Kharechko (buffcount)提供的缓冲区读取解决方案。

我将每个函数运行五次,并计算出120万在线文本文件的平均运行时间。

Windows XP, Python 2.5, 2GB RAM, 2ghz AMD处理器

以下是我的结果:

mapcount : 0.465599966049
simplecount : 0.756399965286
bufcount : 0.546800041199
opcount : 0.718600034714

编辑:Python 2.6的数字:

mapcount : 0.471799945831
simplecount : 0.634400033951
bufcount : 0.468800067902
opcount : 0.602999973297

因此,对于Windows/Python 2.6,缓冲区读取策略似乎是最快的

代码如下:

from __future__ import with_statement
import time
import mmap
import random
from collections import defaultdict

def mapcount(filename):
    f = open(filename, "r+")
    buf = mmap.mmap(f.fileno(), 0)
    lines = 0
    readline = buf.readline
    while readline():
        lines += 1
    return lines

def simplecount(filename):
    lines = 0
    for line in open(filename):
        lines += 1
    return lines

def bufcount(filename):
    f = open(filename)                  
    lines = 0
    buf_size = 1024 * 1024
    read_f = f.read # loop optimization

    buf = read_f(buf_size)
    while buf:
        lines += buf.count('\n')
        buf = read_f(buf_size)

    return lines

def opcount(fname):
    with open(fname) as f:
        for i, l in enumerate(f):
            pass
    return i + 1


counts = defaultdict(list)

for i in range(5):
    for func in [mapcount, simplecount, bufcount, opcount]:
        start_time = time.time()
        assert func("big_file.txt") == 1209138
        counts[func].append(time.time() - start_time)

for key, vals in counts.items():
    print key.__name__, ":", sum(vals) / float(len(vals))

凯尔的回答

num_lines = sum(1 for line in open('my_file.txt'))

最好的替代方案是什么

num_lines =  len(open('my_file.txt').read().splitlines())

这里是两者的性能比较

In [20]: timeit sum(1 for line in open('Charts.ipynb'))
100000 loops, best of 3: 9.79 µs per loop

In [21]: timeit len(open('Charts.ipynb').read().splitlines())
100000 loops, best of 3: 12 µs per loop

如果你的文件中的所有行都是相同的长度(并且只包含ASCII字符)*,你可以非常便宜地执行以下操作:

fileSize     = os.path.getsize( pathToFile )  # file size in bytes
bytesPerLine = someInteger                    # don't forget to account for the newline character
numLines     = fileSize // bytesPerLine

*如果使用像é这样的unicode字符,我怀疑需要更多的努力来确定一行中的字节数。

创建一个可执行脚本文件count.py:

#!/usr/bin/python

import sys
count = 0
for line in sys.stdin:
    count+=1

然后将文件的内容导入python脚本:cat huge.txt | ./count.py。管道也适用于Powershell,因此您将最终计算行数。

对我来说,在Linux上它比简单的解决方案快30%:

count=1
with open('huge.txt') as f:
    count+=1

为什么不读取前100行和后100行,然后估计平均行长,然后用这些数字除以总文件大小呢?如果你不需要一个确切的值,这可以工作。