如何以最有效的内存和时间方式获取大文件的行数?
def file_len(filename):
with open(filename) as f:
for i, _ in enumerate(f):
pass
return i + 1
如何以最有效的内存和时间方式获取大文件的行数?
def file_len(filename):
with open(filename) as f:
for i, _ in enumerate(f):
pass
return i + 1
当前回答
为了完成上述方法,我尝试了fileinput模块的一个变体:
import fileinput as fi
def filecount(fname):
for line in fi.input(fname):
pass
return fi.lineno()
并将一个60mil行文件传递给上述所有方法:
mapcount : 6.1331050396
simplecount : 4.588793993
opcount : 4.42918205261
filecount : 43.2780818939
bufcount : 0.170812129974
这让我有点惊讶,fileinput是如此糟糕,比所有其他方法都要糟糕得多…
其他回答
在perfplot分析之后,必须推荐缓冲读取解决方案
def buf_count_newlines_gen(fname):
def _make_gen(reader):
while True:
b = reader(2 ** 16)
if not b: break
yield b
with open(fname, "rb") as f:
count = sum(buf.count(b"\n") for buf in _make_gen(f.raw.read))
return count
它速度快,内存效率高。大多数其他解决方案大约要慢20倍。
代码重现情节:
import mmap
import subprocess
from functools import partial
import perfplot
def setup(n):
fname = "t.txt"
with open(fname, "w") as f:
for i in range(n):
f.write(str(i) + "\n")
return fname
def for_enumerate(fname):
i = 0
with open(fname) as f:
for i, _ in enumerate(f):
pass
return i + 1
def sum1(fname):
return sum(1 for _ in open(fname))
def mmap_count(fname):
with open(fname, "r+") as f:
buf = mmap.mmap(f.fileno(), 0)
lines = 0
while buf.readline():
lines += 1
return lines
def for_open(fname):
lines = 0
for _ in open(fname):
lines += 1
return lines
def buf_count_newlines(fname):
lines = 0
buf_size = 2 ** 16
with open(fname) as f:
buf = f.read(buf_size)
while buf:
lines += buf.count("\n")
buf = f.read(buf_size)
return lines
def buf_count_newlines_gen(fname):
def _make_gen(reader):
b = reader(2 ** 16)
while b:
yield b
b = reader(2 ** 16)
with open(fname, "rb") as f:
count = sum(buf.count(b"\n") for buf in _make_gen(f.raw.read))
return count
def wc_l(fname):
return int(subprocess.check_output(["wc", "-l", fname]).split()[0])
def sum_partial(fname):
with open(fname) as f:
count = sum(x.count("\n") for x in iter(partial(f.read, 2 ** 16), ""))
return count
def read_count(fname):
return open(fname).read().count("\n")
b = perfplot.bench(
setup=setup,
kernels=[
for_enumerate,
sum1,
mmap_count,
for_open,
wc_l,
buf_count_newlines,
buf_count_newlines_gen,
sum_partial,
read_count,
],
n_range=[2 ** k for k in range(27)],
xlabel="num lines",
)
b.save("out.png")
b.show()
我修改了缓冲区的情况如下:
def CountLines(filename):
f = open(filename)
try:
lines = 1
buf_size = 1024 * 1024
read_f = f.read # loop optimization
buf = read_f(buf_size)
# Empty file
if not buf:
return 0
while buf:
lines += buf.count('\n')
buf = read_f(buf_size)
return lines
finally:
f.close()
现在空文件和最后一行(不带\n)也被计算在内。
一句话解决方案:
import os
os.system("wc -l filename")
我的代码片段:
>>> os.system('wc -l *.txt')
0 bar.txt
1000 command.txt
3 test_file.txt
1003 total
为什么不读取前100行和后100行,然后估计平均行长,然后用这些数字除以总文件大小呢?如果你不需要一个确切的值,这可以工作。
凯尔的回答
num_lines = sum(1 for line in open('my_file.txt'))
最好的替代方案是什么
num_lines = len(open('my_file.txt').read().splitlines())
这里是两者的性能比较
In [20]: timeit sum(1 for line in open('Charts.ipynb'))
100000 loops, best of 3: 9.79 µs per loop
In [21]: timeit len(open('Charts.ipynb').read().splitlines())
100000 loops, best of 3: 12 µs per loop