我正在使用这个数据框架:

Fruit   Date      Name  Number
Apples  10/6/2016 Bob    7
Apples  10/6/2016 Bob    8
Apples  10/6/2016 Mike   9
Apples  10/7/2016 Steve 10
Apples  10/7/2016 Bob    1
Oranges 10/7/2016 Bob    2
Oranges 10/6/2016 Tom   15
Oranges 10/6/2016 Mike  57
Oranges 10/6/2016 Bob   65
Oranges 10/7/2016 Tony   1
Grapes  10/7/2016 Bob    1
Grapes  10/7/2016 Tom   87
Grapes  10/7/2016 Bob   22
Grapes  10/7/2016 Bob   12
Grapes  10/7/2016 Tony  15

我想按名称聚合,然后按水果,以获得每个名称的水果总数。例如:

Bob,Apples,16

我尝试按名称和水果分组,但我如何得到水果的总数?


当前回答

如果你想保留原来的列Fruit和Name,使用reset_index()。否则,Fruit和Name将成为索引的一部分。

df.groupby(['Fruit','Name'])['Number'].sum().reset_index()

Fruit   Name       Number
Apples  Bob        16
Apples  Mike        9
Apples  Steve      10
Grapes  Bob        35
Grapes  Tom        87
Grapes  Tony       15
Oranges Bob        67
Oranges Mike       57
Oranges Tom        15
Oranges Tony        1

从其他答案中可以看出:

df.groupby(['Fruit','Name'])['Number'].sum()

               Number
Fruit   Name         
Apples  Bob        16
        Mike        9
        Steve      10
Grapes  Bob        35
        Tom        87
        Tony       15
Oranges Bob        67
        Mike       57
        Tom        15
        Tony        1

其他回答

其他两个答案都达到了你想要的效果。

您可以使用pivot功能在一个漂亮的表中排列数据

df.groupby(['Fruit','Name'],as_index = False).sum().pivot('Fruit','Name').fillna(0)



Name    Bob     Mike    Steve   Tom    Tony
Fruit                   
Apples  16.0    9.0     10.0    0.0     0.0
Grapes  35.0    0.0     0.0     87.0    15.0
Oranges 67.0    57.0    0.0     15.0    1.0

你可以将groupby列设置为index,然后使用sum with level

df.set_index(['Fruit','Name']).sum(level=[0,1])
Out[175]: 
               Number
Fruit   Name         
Apples  Bob        16
        Mike        9
        Steve      10
Oranges Bob        67
        Tom        15
        Mike       57
        Tony        1
Grapes  Bob        35
        Tom        87
        Tony       15

如果你想让聚合列有一个自定义的名称,如Total Number, Total等(这里的所有解决方案的结果是一个数据帧,其中聚合列命名为Number),使用命名聚合:

df.groupby(['Fruit', 'Name'], as_index=False).agg(**{'Total Number': ('Number', 'sum')})

或者(如果自定义名称中不需要空格):

df.groupby(['Fruit', 'Name'], as_index=False).agg(Total=('Number', 'sum'))

这相当于SQL查询:

SELECT Fruit, Name, sum(Number) AS Total
FROM df 
GROUP BY Fruit, Name

说到SQL,有一个pandasql模块,它允许你使用SQL语法在本地环境中查询pandas dataframe。它不是Pandas的一部分,所以必须单独安装。

#! pip install pandasql
from pandasql import sqldf
sqldf("""
SELECT Fruit, Name, sum(Number) AS Total
FROM df 
GROUP BY Fruit, Name
""")
df.groupby(['Fruit','Name'])['Number'].sum()

您可以选择不同的列来求和。

可以使用reset_index()重置求和之后的索引

df.groupby(['Fruit','Name'])['Number'].sum().reset_index()

or

df.groupby(['Fruit','Name'], as_index=False)['Number'].sum()