任何人只要长时间摆弄Python,都会被以下问题所困扰(或撕成碎片):

def foo(a=[]):
    a.append(5)
    return a

Python新手希望这个没有参数的函数总是返回一个只有一个元素的列表:[5]。结果却非常不同,非常令人惊讶(对于新手来说):

>>> foo()
[5]
>>> foo()
[5, 5]
>>> foo()
[5, 5, 5]
>>> foo()
[5, 5, 5, 5]
>>> foo()

我的一位经理曾第一次接触到这个功能,并称其为语言的“戏剧性设计缺陷”。我回答说,这种行为有一个潜在的解释,如果你不了解其内部,这确实非常令人困惑和意外。然而,我无法(对自己)回答以下问题:在函数定义时而不是在函数执行时绑定默认参数的原因是什么?我怀疑有经验的行为是否有实际用途(谁真的在C中使用了静态变量,而没有滋生bug?)

编辑:

Baczek举了一个有趣的例子。连同您的大多数评论,特别是Utaal的评论,我进一步阐述了:

>>> def a():
...     print("a executed")
...     return []
... 
>>>            
>>> def b(x=a()):
...     x.append(5)
...     print(x)
... 
a executed
>>> b()
[5]
>>> b()
[5, 5]

在我看来,设计决策似乎与将参数范围放在哪里有关:放在函数内部,还是与函数“一起”?

在函数内部进行绑定意味着当函数被调用而不是被定义时,x被有效地绑定到指定的默认值,这将带来一个严重的缺陷:def行将是“混合”的,即部分绑定(函数对象)将在定义时发生,部分绑定(默认参数的赋值)将在函数调用时发生。

实际行为更加一致:当执行该行时,该行的所有内容都会得到求值,这意味着在函数定义时。


当前回答

这实际上与默认值无关,只是当您使用可变默认值编写函数时,它通常会出现意外行为。

>>> def foo(a):
    a.append(5)
    print a

>>> a  = [5]
>>> foo(a)
[5, 5]
>>> foo(a)
[5, 5, 5]
>>> foo(a)
[5, 5, 5, 5]
>>> foo(a)
[5, 5, 5, 5, 5]

在这段代码中看不到默认值,但您会遇到完全相同的问题。

问题是,foo正在修改从调用方传入的可变变量,而调用方并不期望这样做。如果函数的调用类似于append_5,那么这样的代码就可以了;那么调用者将调用函数以修改传入的值,并且行为是预期的。但是这样的函数不太可能采用默认参数,并且可能不会返回列表(因为调用者已经有了对该列表的引用;它刚刚传入的那个)。

您的原始foo(带有默认参数)不应该修改a,无论它是显式传入还是获得默认值。除非从上下文/名称/文档中可以清楚地看到参数应该被修改,否则代码应该保留可变参数。无论我们是否使用Python,也不管是否涉及默认参数,使用作为参数传入的可变值作为本地临时变量是一个非常糟糕的想法。

如果在计算过程中需要破坏性地操作本地临时变量,并且需要从参数值开始操作,则需要创建副本。

其他回答

我有时会利用这种行为来替代以下模式:

singleton = None

def use_singleton():
    global singleton

    if singleton is None:
        singleton = _make_singleton()

    return singleton.use_me()

如果singleton仅由use_singleton使用,我喜欢以下模式作为替换:

# _make_singleton() is called only once when the def is executed
def use_singleton(singleton=_make_singleton()):
    return singleton.use_me()

我用它来实例化访问外部资源的客户机类,也用来创建用于内存化的字典或列表。

由于我不认为这种模式是众所周知的,所以我确实发表了简短的评论,以防止未来的误解。

这是一种性能优化。由于此功能,您认为这两个函数调用中哪一个更快?

def print_tuple(some_tuple=(1,2,3)):
    print some_tuple

print_tuple()        #1
print_tuple((1,2,3)) #2

我会给你一个提示。这是拆卸(参见http://docs.python.org/library/dis.html):

#1

0 LOAD_GLOBAL              0 (print_tuple)
3 CALL_FUNCTION            0
6 POP_TOP
7 LOAD_CONST               0 (None)
10 RETURN_VALUE

#2

 0 LOAD_GLOBAL              0 (print_tuple)
 3 LOAD_CONST               4 ((1, 2, 3))
 6 CALL_FUNCTION            1
 9 POP_TOP
10 LOAD_CONST               0 (None)
13 RETURN_VALUE

我怀疑有经验的行为是否有实际用途(谁真的在C中使用了静态变量,而没有滋生bug?)

正如您所看到的,使用不可变的默认参数会带来性能上的好处。如果它是一个频繁调用的函数,或者默认参数需要很长时间才能构造,那么这可能会有所不同。此外,请记住Python不是C。在C中,您可以使用非常免费的常量。在Python中,你没有这个好处。

TLDR:定义时间默认值是一致的,严格来说更具表达力。


定义函数会影响两个作用域:包含函数的定义作用域和函数所包含的执行作用域。虽然很清楚块是如何映射到作用域的,但问题是def<name>(<args=defaults>):属于:

...                           # defining scope
def name(parameter=default):  # ???
    ...                       # execution scope

def-name部分必须在定义范围内求值,毕竟我们希望name在定义范围中可用。仅在函数内部求值将使其无法访问。

由于参数是一个常量名称,所以我们可以在定义名称的同时对其进行“求值”。这还有一个优点,它生成的函数具有已知签名name(parameter=…):,而不是裸名(…):。

现在,何时评估默认值?

一致性已经表明“在定义时”:def<name>(<args=defaults>)的所有其他属性:也最好在定义时进行评估。推迟部分时间将是一个令人惊讶的选择。

这两种选择也不等同:如果在定义时计算默认值,它仍然会影响执行时间。如果在执行时计算默认值,则不会影响定义时间。选择“at definition”可以表达两种情况,而选择“at executing”只能表达一种情况:

def name(parameter=defined):  # set default at definition time
    ...

def name(parameter=default):     # delay default until execution time
    parameter = default if parameter is None else parameter
    ...

你问的是为什么会这样:

def func(a=[], b = 2):
    pass

在内部并不等同于此:

def func(a=None, b = None):
    a_default = lambda: []
    b_default = lambda: 2
    def actual_func(a=None, b=None):
        if a is None: a = a_default()
        if b is None: b = b_default()
    return actual_func
func = func()

除了显式调用func(None,None)的情况,我们将忽略它。

换句话说,与其计算默认参数,不如存储每个参数,并在调用函数时计算它们?

一个答案可能就在这里——它可以有效地将每个带有默认参数的函数转换为闭包。即使所有数据都隐藏在解释器中,而不是完全关闭,数据也必须存储在某个地方。它会更慢,占用更多内存。

Python防御5分

简单:行为在以下意义上很简单:大多数人只会陷入一次,而不是几次。一致性:Python始终传递对象,而不是名称。显然,默认参数是函数的一部分标题(而不是函数体)。因此,应该对其进行评估在模块加载时(并且仅在模块加载时间,除非嵌套),而不是在函数调用时。有用性:正如Frederik Lundh在解释中指出的在“Python中的默认参数值”中当前行为对于高级编程非常有用。(谨慎使用。)足够的文档:在最基本的Python文档中,在教程中,这个问题被大声宣布为第节第一小节中的“重要警告”“更多关于定义函数”。警告甚至使用粗体,这很少应用于标题之外。RTF:阅读详细手册。元学习:落入陷阱实际上是一个非常有帮助的时刻(至少如果你是一个反思型学习者),因为你随后会更好地理解这一点上述“一致性”将教你很多关于Python的知识。