我在试着寻找二叉搜索树的定义我发现到处都是不同的定义。
有人说,对于任何给定的子树,左子键都小于或等于根键。
有人说,对于任何给定的子树,右子键大于或等于根键。
我以前的大学数据结构书说“每个元素都有一个键,没有两个元素有相同的键。”
bst有一个通用的定义吗?特别是关于如何处理具有相同键的多个实例的树。
编辑:也许我不清楚,我看到的定义是
1)左<=根<右
2)左<根<=右
3)左<根<右,这样就不存在重复的键。
我在试着寻找二叉搜索树的定义我发现到处都是不同的定义。
有人说,对于任何给定的子树,左子键都小于或等于根键。
有人说,对于任何给定的子树,右子键大于或等于根键。
我以前的大学数据结构书说“每个元素都有一个键,没有两个元素有相同的键。”
bst有一个通用的定义吗?特别是关于如何处理具有相同键的多个实例的树。
编辑:也许我不清楚,我看到的定义是
1)左<=根<右
2)左<根<=右
3)左<根<右,这样就不存在重复的键。
当前回答
任何定义都是有效的。只要在实现中保持一致(总是把相等的节点放在右边,总是把它们放在左边,或者不允许它们这样做),那么就没问题。我认为不允许它们是最常见的,但如果允许它们并放置在左边或右边,它仍然是一个BST。
其他回答
你说的三件事都是真的。
密钥是唯一的 左边是比这个小的键 右边是比这个大的键
我想你可以把你的树倒过来,把较小的键放在右边,但实际上“左”和“右”的概念只是:一个可视化的概念,帮助我们思考一个没有真正的左或右的数据结构,所以这并不重要。
元素排序关系<=是一个总顺序,因此关系必须是自反的,但通常二叉搜索树(又名BST)是一个没有重复的树。
否则,如果有重复你需要运行两次或更多相同的功能删除!
所有这三个定义都是可以接受和正确的。它们定义了BST的不同变体。
你的大学数据结构的书没有说明它的定义不是唯一可能的。
当然,允许复制会增加复杂性。如果你使用定义"left <= root < right",你有一个这样的树:
3
/ \
2 4
然后在这个树中添加一个重复的“3”键将导致:
3
/ \
2 4
\
3
注意,副本不是连续的级别。
当允许像上面那样的BST表示中的副本时,这是一个大问题:副本可以被任意数量的层分隔,因此检查副本的存在并不像检查节点的直接子节点那么简单。
避免此问题的一个选项是不从结构上表示重复项(作为单独的节点),而是使用一个计数器来计算键出现的次数。前面的例子会有一个这样的树:
3(1)
/ \
2(1) 4(1)
在插入重复的"3"键后,它将变成:
3(2)
/ \
2(1) 4(1)
这简化了查找、删除和插入操作,但牺牲了一些额外的字节和计数器操作。
1.)左<=根<右 2.)左<根<=右 3.)左<根<右,这样就不存在重复的键。
我可能要去翻出我的算法书籍,但我的头脑中(3)是标准形式。
(1)或(2)只在你开始允许重复的节点并且你把重复的节点放在树本身(而不是包含列表的节点)时才会出现。
在Cormen、Leiserson、Rivest和Stein合著的《算法介绍》第三版中,二叉搜索树(BST)被明确定义为允许重复。这可以从图12.1和以下(第287页)中看到:
二叉搜索树中的键总是以满足二叉搜索树属性的方式存储:设x是二叉搜索树中的一个节点。如果y是x的左子树中的一个节点,则y:key <= x:key。如果y是x的右子树中的一个节点,那么y:key >= x:key。”
此外,红黑树在308页被定义为:
红黑树是一种二叉搜索树,每个节点有一个额外的存储位:它的颜色。
因此,本书定义的红黑树支持重复。