我有一个包含因子的数据帧。当我使用子集或其他索引函数创建这个数据帧的子集时,就创建了一个新的数据帧。然而,因子变量保留其所有原始水平,即使它们不存在于新的数据框架中。
这在绘制面图或使用依赖于因子级别的函数时会导致问题。
在新的数据框架中从一个因子中移除级别最简洁的方法是什么?
这里有一个例子:
df <- data.frame(letters=letters[1:5],
numbers=seq(1:5))
levels(df$letters)
## [1] "a" "b" "c" "d" "e"
subdf <- subset(df, numbers <= 3)
## letters numbers
## 1 a 1
## 2 b 2
## 3 c 3
# all levels are still there!
levels(subdf$letters)
## [1] "a" "b" "c" "d" "e"
一个真正的droplevels函数是collapse::fdroplevels,它比droplevels快得多,并且不执行任何不必要的匹配或数值制表。例子:
library(collapse)
library(microbenchmark)
# wlddev data supplied in collapse, iso3c is a factor
data <- fsubset(wlddev, iso3c %!in% "USA")
microbenchmark(fdroplevels(data), droplevels(data), unit = "relative")
## Unit: relative
## expr min lq mean median uq max neval cld
## fdroplevels(data) 1.0 1.00000 1.00000 1.00000 1.00000 1.00000 100 a
## droplevels(data) 30.2 29.15873 24.54175 24.86147 22.11553 14.23274 100 b
查看R源代码中的droplevels方法代码,您可以看到它包装为因子函数。这意味着你基本上可以用因子函数重新创建列。
下面是数据。从所有因子列中删除级别的表方式。
library(data.table)
dt = data.table(letters=factor(letters[1:5]), numbers=seq(1:5))
levels(dt$letters)
#[1] "a" "b" "c" "d" "e"
subdt = dt[numbers <= 3]
levels(subdt$letters)
#[1] "a" "b" "c" "d" "e"
upd.cols = sapply(subdt, is.factor)
subdt[, names(subdt)[upd.cols] := lapply(.SD, factor), .SDcols = upd.cols]
levels(subdt$letters)
#[1] "a" "b" "c"