在JavaScript中实现堆栈和队列的最佳方法是什么?
我想做调车场算法我需要这些数据结构。
在JavaScript中实现堆栈和队列的最佳方法是什么?
我想做调车场算法我需要这些数据结构。
当前回答
Javascript数组shift()很慢,特别是当包含很多元素时。我知道两种方法来实现平摊O(1)复杂度的队列。
首先是使用循环缓冲区和表加倍。我以前实现过这个。你可以在这里看到我的源代码 https://github.com/kevyuu/rapid-queue
第二种方法是使用两个堆栈。这是带有两个堆栈的队列的代码
function createDoubleStackQueue() {
var that = {};
var pushContainer = [];
var popContainer = [];
function moveElementToPopContainer() {
while (pushContainer.length !==0 ) {
var element = pushContainer.pop();
popContainer.push(element);
}
}
that.push = function(element) {
pushContainer.push(element);
};
that.shift = function() {
if (popContainer.length === 0) {
moveElementToPopContainer();
}
if (popContainer.length === 0) {
return null;
} else {
return popContainer.pop();
}
};
that.front = function() {
if (popContainer.length === 0) {
moveElementToPopContainer();
}
if (popContainer.length === 0) {
return null;
}
return popContainer[popContainer.length - 1];
};
that.length = function() {
return pushContainer.length + popContainer.length;
};
that.isEmpty = function() {
return (pushContainer.length + popContainer.length) === 0;
};
return that;}
这是使用jsPerf进行的性能比较
CircularQueue.shift() vs Array.shift()
http://jsperf.com/rapidqueue-shift-vs-array-shift
正如你所看到的,大数据集的速度要快得多
其他回答
下面是一个相当简单的队列实现,有两个目标:
与array.shift()不同,您知道这个出队列方法需要常数时间(O(1))。 为了提高速度,这种方法使用的分配比链表方法少得多。
堆栈实现只共享第二个目标。
// Queue
function Queue() {
this.q = new Array(5);
this.first = 0;
this.size = 0;
}
Queue.prototype.enqueue = function(a) {
var other;
if (this.size == this.q.length) {
other = new Array(this.size*2);
for (var i = 0; i < this.size; i++) {
other[i] = this.q[(this.first+i)%this.size];
}
this.first = 0;
this.q = other;
}
this.q[(this.first+this.size)%this.q.length] = a;
this.size++;
};
Queue.prototype.dequeue = function() {
if (this.size == 0) return undefined;
this.size--;
var ret = this.q[this.first];
this.first = (this.first+1)%this.q.length;
return ret;
};
Queue.prototype.peek = function() { return this.size > 0 ? this.q[this.first] : undefined; };
Queue.prototype.isEmpty = function() { return this.size == 0; };
// Stack
function Stack() {
this.s = new Array(5);
this.size = 0;
}
Stack.prototype.push = function(a) {
var other;
if (this.size == this.s.length) {
other = new Array(this.s.length*2);
for (var i = 0; i < this.s.length; i++) other[i] = this.s[i];
this.s = other;
}
this.s[this.size++] = a;
};
Stack.prototype.pop = function() {
if (this.size == 0) return undefined;
return this.s[--this.size];
};
Stack.prototype.peek = function() { return this.size > 0 ? this.s[this.size-1] : undefined; };
下面是一个队列的链表版本,它也包括最后一个节点,这是@perkins建议的,也是最合适的。
// QUEUE Object Definition
var Queue = function() {
this.first = null;
this.last = null;
this.size = 0;
};
var Node = function(data) {
this.data = data;
this.next = null;
};
Queue.prototype.enqueue = function(data) {
var node = new Node(data);
if (!this.first){ // for empty list first and last are the same
this.first = node;
this.last = node;
} else { // otherwise we stick it on the end
this.last.next=node;
this.last=node;
}
this.size += 1;
return node;
};
Queue.prototype.dequeue = function() {
if (!this.first) //check for empty list
return null;
temp = this.first; // grab top of list
if (this.first==this.last) {
this.last=null; // when we need to pop the last one
}
this.first = this.first.next; // move top of list down
this.size -= 1;
return temp;
};
没有数组(年代)
//Javascript stack linked list data structure (no array)
function node(value, noderef) {
this.value = value;
this.next = noderef;
}
function stack() {
this.push = function (value) {
this.next = this.first;
this.first = new node(value, this.next);
}
this.pop = function () {
var popvalue = this.first.value;
this.first = this.first.next;
return popvalue;
}
this.hasnext = function () {
return this.next != undefined;
}
this.isempty = function () {
return this.first == undefined;
}
}
//Javascript stack linked list data structure (no array)
function node(value, noderef) {
this.value = value;
this.next = undefined;
}
function queue() {
this.enqueue = function (value) {
this.oldlast = this.last;
this.last = new node(value);
if (this.isempty())
this.first = this.last;
else
this.oldlast.next = this.last;
}
this.dequeue = function () {
var queuvalue = this.first.value;
this.first = this.first.next;
return queuvalue;
}
this.hasnext = function () {
return this.first.next != undefined;
}
this.isempty = function () {
return this.first == undefined;
}
}
正如其他答案中解释的那样,堆栈实现是微不足道的。
然而,我在这个线程中没有找到任何满意的答案,所以我自己做了一个队列。
在这个线程中有三种类型的解决方案:
数组——在大型数组上使用array.shift()是最糟糕的解决方案,效率非常低。 链表——它是O(1),但是为每个元素使用一个对象有点过分,特别是如果它们很多而且它们很小,比如存储数字。 延迟移位数组——它包括将索引与数组关联。当一个元素退出队列时,索引向前移动。当索引到达数组的中间时,数组被切成两半以删除前一半。
在我看来,延迟移位数组是最令人满意的解决方案,但它们仍然将所有内容存储在一个大的连续数组中,这可能会有问题,并且当数组被切片时,应用程序将错开。
我使用小数组的链表(每个最多1000个元素)实现。这些数组的行为类似于延迟移位数组,只是它们从未被切片:当数组中的每个元素都被移除时,该数组将被简单地丢弃。
这个包在npm上,具有基本的FIFO功能,我最近刚刚推送了它。代码分为两部分。
这是第一部分
/** Queue contains a linked list of Subqueue */
class Subqueue <T> {
public full() {
return this.array.length >= 1000;
}
public get size() {
return this.array.length - this.index;
}
public peek(): T {
return this.array[this.index];
}
public last(): T {
return this.array[this.array.length-1];
}
public dequeue(): T {
return this.array[this.index++];
}
public enqueue(elem: T) {
this.array.push(elem);
}
private index: number = 0;
private array: T [] = [];
public next: Subqueue<T> = null;
}
这里是Queue的主类:
class Queue<T> {
get length() {
return this._size;
}
public push(...elems: T[]) {
for (let elem of elems) {
if (this.bottom.full()) {
this.bottom = this.bottom.next = new Subqueue<T>();
}
this.bottom.enqueue(elem);
}
this._size += elems.length;
}
public shift(): T {
if (this._size === 0) {
return undefined;
}
const val = this.top.dequeue();
this._size--;
if (this._size > 0 && this.top.size === 0 && this.top.full()) {
// Discard current subqueue and point top to the one after
this.top = this.top.next;
}
return val;
}
public peek(): T {
return this.top.peek();
}
public last(): T {
return this.bottom.last();
}
public clear() {
this.bottom = this.top = new Subqueue();
this._size = 0;
}
private top: Subqueue<T> = new Subqueue();
private bottom: Subqueue<T> = this.top;
private _size: number = 0;
}
类型注释(:X)可以很容易地删除,以获得ES6 javascript代码。
/*------------------------------------------------------------------
Defining Stack Operations using Closures in Javascript, privacy and
state of stack operations are maintained
@author:Arijt Basu
Log: Sun Dec 27, 2015, 3:25PM
-------------------------------------------------------------------
*/
var stackControl = true;
var stack = (function(array) {
array = [];
//--Define the max size of the stack
var MAX_SIZE = 5;
function isEmpty() {
if (array.length < 1) console.log("Stack is empty");
};
isEmpty();
return {
push: function(ele) {
if (array.length < MAX_SIZE) {
array.push(ele)
return array;
} else {
console.log("Stack Overflow")
}
},
pop: function() {
if (array.length > 1) {
array.pop();
return array;
} else {
console.log("Stack Underflow");
}
}
}
})()
// var list = 5;
// console.log(stack(list))
if (stackControl) {
console.log(stack.pop());
console.log(stack.push(3));
console.log(stack.push(2));
console.log(stack.pop());
console.log(stack.push(1));
console.log(stack.pop());
console.log(stack.push(38));
console.log(stack.push(22));
console.log(stack.pop());
console.log(stack.pop());
console.log(stack.push(6));
console.log(stack.pop());
}
//End of STACK Logic
/* Defining Queue operations*/
var queue = (function(array) {
array = [];
var reversearray;
//--Define the max size of the stack
var MAX_SIZE = 5;
function isEmpty() {
if (array.length < 1) console.log("Queue is empty");
};
isEmpty();
return {
insert: function(ele) {
if (array.length < MAX_SIZE) {
array.push(ele)
reversearray = array.reverse();
return reversearray;
} else {
console.log("Queue Overflow")
}
},
delete: function() {
if (array.length > 1) {
//reversearray = array.reverse();
array.pop();
return array;
} else {
console.log("Queue Underflow");
}
}
}
})()
console.log(queue.insert(5))
console.log(queue.insert(3))
console.log(queue.delete(3))