在JavaScript中实现堆栈和队列的最佳方法是什么?

我想做调车场算法我需要这些数据结构。


当前回答

Javascript数组shift()很慢,特别是当包含很多元素时。我知道两种方法来实现平摊O(1)复杂度的队列。

首先是使用循环缓冲区和表加倍。我以前实现过这个。你可以在这里看到我的源代码 https://github.com/kevyuu/rapid-queue

第二种方法是使用两个堆栈。这是带有两个堆栈的队列的代码

function createDoubleStackQueue() {
var that = {};
var pushContainer = [];
var popContainer = [];

function moveElementToPopContainer() {
    while (pushContainer.length !==0 ) {
        var element = pushContainer.pop();
        popContainer.push(element);
    }
}

that.push = function(element) {
    pushContainer.push(element);
};

that.shift = function() {
    if (popContainer.length === 0) {
        moveElementToPopContainer();
    }
    if (popContainer.length === 0) {
        return null;
    } else {
        return popContainer.pop();
    }
};

that.front = function() {
    if (popContainer.length === 0) {
        moveElementToPopContainer();
    }
    if (popContainer.length === 0) {
        return null;
    }
    return popContainer[popContainer.length - 1];
};

that.length = function() {
    return pushContainer.length + popContainer.length;
};

that.isEmpty = function() {
    return (pushContainer.length + popContainer.length) === 0;
};

return that;}

这是使用jsPerf进行的性能比较

CircularQueue.shift() vs Array.shift()

http://jsperf.com/rapidqueue-shift-vs-array-shift

正如你所看到的,大数据集的速度要快得多

其他回答

下面是一个相当简单的队列实现,有两个目标:

与array.shift()不同,您知道这个出队列方法需要常数时间(O(1))。 为了提高速度,这种方法使用的分配比链表方法少得多。

堆栈实现只共享第二个目标。

// Queue
function Queue() {
        this.q = new Array(5);
        this.first = 0;
        this.size = 0;
}
Queue.prototype.enqueue = function(a) {
        var other;
        if (this.size == this.q.length) {
                other = new Array(this.size*2);
                for (var i = 0; i < this.size; i++) {
                        other[i] = this.q[(this.first+i)%this.size];
                }
                this.first = 0;
                this.q = other;
        }
        this.q[(this.first+this.size)%this.q.length] = a;
        this.size++;
};
Queue.prototype.dequeue = function() {
        if (this.size == 0) return undefined;
        this.size--;
        var ret = this.q[this.first];
        this.first = (this.first+1)%this.q.length;
        return ret;
};
Queue.prototype.peek = function() { return this.size > 0 ? this.q[this.first] : undefined; };
Queue.prototype.isEmpty = function() { return this.size == 0; };

// Stack
function Stack() {
        this.s = new Array(5);
        this.size = 0;
}
Stack.prototype.push = function(a) {
        var other;
    if (this.size == this.s.length) {
            other = new Array(this.s.length*2);
            for (var i = 0; i < this.s.length; i++) other[i] = this.s[i];
            this.s = other;
    }
    this.s[this.size++] = a;
};
Stack.prototype.pop = function() {
        if (this.size == 0) return undefined;
        return this.s[--this.size];
};
Stack.prototype.peek = function() { return this.size > 0 ? this.s[this.size-1] : undefined; };

下面是一个队列的链表版本,它也包括最后一个节点,这是@perkins建议的,也是最合适的。

// QUEUE Object Definition

var Queue = function() {
  this.first = null;
  this.last = null;
  this.size = 0;
};

var Node = function(data) {
  this.data = data;
  this.next = null;
};

Queue.prototype.enqueue = function(data) {
  var node = new Node(data);

  if (!this.first){ // for empty list first and last are the same
    this.first = node;
    this.last = node;
  } else { // otherwise we stick it on the end
    this.last.next=node;
    this.last=node;
  }

  this.size += 1;
  return node;
};

Queue.prototype.dequeue = function() {
  if (!this.first) //check for empty list
    return null;

  temp = this.first; // grab top of list
  if (this.first==this.last) {
    this.last=null;  // when we need to pop the last one
  }
  this.first = this.first.next; // move top of list down
  this.size -= 1;
  return temp;
};

没有数组(年代)

//Javascript stack linked list data structure (no array)

function node(value, noderef) {
    this.value = value;
    this.next = noderef;
}
function stack() {
    this.push = function (value) {
        this.next = this.first;
        this.first = new node(value, this.next);
    }
    this.pop = function () {
        var popvalue = this.first.value;
        this.first = this.first.next;
        return popvalue;
    }
    this.hasnext = function () {
        return this.next != undefined;
    }
    this.isempty = function () {
        return this.first == undefined;
    }

}

//Javascript stack linked list data structure (no array)
function node(value, noderef) {
    this.value = value;
    this.next = undefined;
}
function queue() {
    this.enqueue = function (value) {
        this.oldlast = this.last;
        this.last = new node(value);
        if (this.isempty())
            this.first = this.last;
        else 
           this.oldlast.next = this.last;
    }
    this.dequeue = function () {
        var queuvalue = this.first.value;
        this.first = this.first.next;
        return queuvalue;
    }
    this.hasnext = function () {
        return this.first.next != undefined;
    }
    this.isempty = function () {
        return this.first == undefined;
    }

}

正如其他答案中解释的那样,堆栈实现是微不足道的。

然而,我在这个线程中没有找到任何满意的答案,所以我自己做了一个队列。

在这个线程中有三种类型的解决方案:

数组——在大型数组上使用array.shift()是最糟糕的解决方案,效率非常低。 链表——它是O(1),但是为每个元素使用一个对象有点过分,特别是如果它们很多而且它们很小,比如存储数字。 延迟移位数组——它包括将索引与数组关联。当一个元素退出队列时,索引向前移动。当索引到达数组的中间时,数组被切成两半以删除前一半。

在我看来,延迟移位数组是最令人满意的解决方案,但它们仍然将所有内容存储在一个大的连续数组中,这可能会有问题,并且当数组被切片时,应用程序将错开。

我使用小数组的链表(每个最多1000个元素)实现。这些数组的行为类似于延迟移位数组,只是它们从未被切片:当数组中的每个元素都被移除时,该数组将被简单地丢弃。

这个包在npm上,具有基本的FIFO功能,我最近刚刚推送了它。代码分为两部分。

这是第一部分

/** Queue contains a linked list of Subqueue */
class Subqueue <T> {
  public full() {
    return this.array.length >= 1000;
  }

  public get size() {
    return this.array.length - this.index;
  }

  public peek(): T {
    return this.array[this.index];
  }

  public last(): T {
    return this.array[this.array.length-1];
  }

  public dequeue(): T {
    return this.array[this.index++];
  }

  public enqueue(elem: T) {
    this.array.push(elem);
  }

  private index: number = 0;
  private array: T [] = [];

  public next: Subqueue<T> = null;
}

这里是Queue的主类:

class Queue<T> {
  get length() {
    return this._size;
  }

  public push(...elems: T[]) {
    for (let elem of elems) {
      if (this.bottom.full()) {
        this.bottom = this.bottom.next = new Subqueue<T>();
      }
      this.bottom.enqueue(elem);
    }

    this._size += elems.length;
  }

  public shift(): T {
    if (this._size === 0) {
      return undefined;
    }

    const val = this.top.dequeue();
    this._size--;
    if (this._size > 0 && this.top.size === 0 && this.top.full()) {
      // Discard current subqueue and point top to the one after
      this.top = this.top.next;
    }
    return val;
  }

  public peek(): T {
    return this.top.peek();
  }

  public last(): T {
    return this.bottom.last();
  }

  public clear() {
    this.bottom = this.top = new Subqueue();
    this._size = 0;
  }

  private top: Subqueue<T> = new Subqueue();
  private bottom: Subqueue<T> = this.top;
  private _size: number = 0;
}

类型注释(:X)可以很容易地删除,以获得ES6 javascript代码。

/*------------------------------------------------------------------ 
 Defining Stack Operations using Closures in Javascript, privacy and
 state of stack operations are maintained

 @author:Arijt Basu
 Log: Sun Dec 27, 2015, 3:25PM
 ------------------------------------------------------------------- 
 */
var stackControl = true;
var stack = (function(array) {
        array = [];
        //--Define the max size of the stack
        var MAX_SIZE = 5;

        function isEmpty() {
            if (array.length < 1) console.log("Stack is empty");
        };
        isEmpty();

        return {

            push: function(ele) {
                if (array.length < MAX_SIZE) {
                    array.push(ele)
                    return array;
                } else {
                    console.log("Stack Overflow")
                }
            },
            pop: function() {
                if (array.length > 1) {
                    array.pop();
                    return array;
                } else {
                    console.log("Stack Underflow");
                }
            }

        }
    })()
    // var list = 5;
    // console.log(stack(list))
if (stackControl) {
    console.log(stack.pop());
    console.log(stack.push(3));
    console.log(stack.push(2));
    console.log(stack.pop());
    console.log(stack.push(1));
    console.log(stack.pop());
    console.log(stack.push(38));
    console.log(stack.push(22));
    console.log(stack.pop());
    console.log(stack.pop());
    console.log(stack.push(6));
    console.log(stack.pop());
}
//End of STACK Logic

/* Defining Queue operations*/

var queue = (function(array) {
    array = [];
    var reversearray;
    //--Define the max size of the stack
    var MAX_SIZE = 5;

    function isEmpty() {
        if (array.length < 1) console.log("Queue is empty");
    };
    isEmpty();

    return {
        insert: function(ele) {
            if (array.length < MAX_SIZE) {
                array.push(ele)
                reversearray = array.reverse();
                return reversearray;
            } else {
                console.log("Queue Overflow")
            }
        },
        delete: function() {
            if (array.length > 1) {
                //reversearray = array.reverse();
                array.pop();
                return array;
            } else {
                console.log("Queue Underflow");
            }
        }
    }



})()

console.log(queue.insert(5))
console.log(queue.insert(3))
console.log(queue.delete(3))