我使用Python 2从ASCII编码的文本文件解析JSON。
当用json或simplejson加载这些文件时,我的所有字符串值都转换为Unicode对象而不是字符串对象。问题是,我必须将数据与一些只接受字符串对象的库一起使用。我不能更改库也不能更新它们。
是否有可能获得字符串对象而不是Unicode对象?
例子
>>> import json
>>> original_list = ['a', 'b']
>>> json_list = json.dumps(original_list)
>>> json_list
'["a", "b"]'
>>> new_list = json.loads(json_list)
>>> new_list
[u'a', u'b'] # I want these to be of type `str`, not `unicode`
(2017年一个简单而干净的解决方案是使用最新版本的Python——即Python 3和更高版本。)
我也遇到了同样的问题。
因为我需要将所有数据传递给PyGTK,所以Unicode字符串对我来说也不是很有用。这是另一种递归转换方法。实际上,类型安全的JSON转换也需要它——JSON .dump()会放弃任何非字面量,比如Python对象。但是它不转换字典索引。
# removes any objects, turns Unicode back into str
def filter_data(obj):
if type(obj) in (int, float, str, bool):
return obj
elif type(obj) == unicode:
return str(obj)
elif type(obj) in (list, tuple, set):
obj = list(obj)
for i,v in enumerate(obj):
obj[i] = filter_data(v)
elif type(obj) == dict:
for i,v in obj.iteritems():
obj[i] = filter_data(v)
else:
print "invalid object in data, converting to string"
obj = str(obj)
return obj
我构建了这个递归施法者。它符合我的需要,我认为它是相对完整的。
def _parseJSON(self, obj):
newobj = {}
for key, value in obj.iteritems():
key = str(key)
if isinstance(value, dict):
newobj[key] = self._parseJSON(value)
elif isinstance(value, list):
if key not in newobj:
newobj[key] = []
for i in value:
newobj[key].append(self._parseJSON(i))
elif isinstance(value, unicode):
val = str(value)
if val.isdigit():
val = int(val)
else:
try:
val = float(val)
except ValueError:
val = str(val)
newobj[key] = val
return newobj
只需要像这样传递一个JSON对象:
obj = json.loads(content, parse_float=float, parse_int=int)
obj = _parseJSON(obj)
我把它作为一个类的私有成员,但您可以根据需要重新使用该方法。
下面是一个用C语言编写的递归编码器:
https://github.com/axiros/nested_encode
与json.loads()相比,“平均”结构的性能开销约为10%。
python speed.py
json loads [0.16sec]: {u'a': [{u'b': [[1, 2, [u'\xd6ster..
json loads + encoding [0.18sec]: {'a': [{'b': [[1, 2, ['\xc3\x96ster.
time overhead in percent: 9%
使用这个测试结构:
import json, nested_encode, time
s = """
{
"firstName": "Jos\\u0301",
"lastName": "Smith",
"isAlive": true,
"age": 25,
"address": {
"streetAddress": "21 2nd Street",
"city": "\\u00d6sterreich",
"state": "NY",
"postalCode": "10021-3100"
},
"phoneNumbers": [
{
"type": "home",
"number": "212 555-1234"
},
{
"type": "office",
"number": "646 555-4567"
}
],
"children": [],
"spouse": null,
"a": [{"b": [[1, 2, ["\\u00d6sterreich"]]]}]
}
"""
t1 = time.time()
for i in xrange(10000):
u = json.loads(s)
dt_json = time.time() - t1
t1 = time.time()
for i in xrange(10000):
b = nested_encode.encode_nested(json.loads(s))
dt_json_enc = time.time() - t1
print "json loads [%.2fsec]: %s..." % (dt_json, str(u)[:20])
print "json loads + encoding [%.2fsec]: %s..." % (dt_json_enc, str(b)[:20])
print "time overhead in percent: %i%%" % (100 * (dt_json_enc - dt_json)/dt_json)