我使用Python 2从ASCII编码的文本文件解析JSON。

当用json或simplejson加载这些文件时,我的所有字符串值都转换为Unicode对象而不是字符串对象。问题是,我必须将数据与一些只接受字符串对象的库一起使用。我不能更改库也不能更新它们。

是否有可能获得字符串对象而不是Unicode对象?

例子

>>> import json
>>> original_list = ['a', 'b']
>>> json_list = json.dumps(original_list)
>>> json_list
'["a", "b"]'
>>> new_list = json.loads(json_list)
>>> new_list
[u'a', u'b']  # I want these to be of type `str`, not `unicode`

(2017年一个简单而干净的解决方案是使用最新版本的Python——即Python 3和更高版本。)


当前回答

使用object_hook的解决方案

它适用于Python 2.7和3.x。

import json

def json_load_byteified(file_handle):
    return _byteify(
        json.load(file_handle, object_hook=_byteify),
        ignore_dicts=True
    )

def json_loads_byteified(json_text):
    return _byteify(
        json.loads(json_text, object_hook=_byteify),
        ignore_dicts=True
    )

def _byteify(data, ignore_dicts = False):
    if isinstance(data, str):
        return data

    # If this is a list of values, return list of byteified values
    if isinstance(data, list):
        return [ _byteify(item, ignore_dicts=True) for item in data ]
    # If this is a dictionary, return dictionary of byteified keys and values
    # but only if we haven't already byteified it
    if isinstance(data, dict) and not ignore_dicts:
        return {
            _byteify(key, ignore_dicts=True): _byteify(value, ignore_dicts=True)
            for key, value in data.items() # changed to .items() for Python 2.7/3
        }

    # Python 3 compatible duck-typing
    # If this is a Unicode string, return its string representation
    if str(type(data)) == "<type 'unicode'>":
        return data.encode('utf-8')

    # If it's anything else, return it in its original form
    return data

使用示例:

>>> json_loads_byteified('{"Hello": "World"}')
{'Hello': 'World'}
>>> json_loads_byteified('"I am a top-level string"')
'I am a top-level string'
>>> json_loads_byteified('7')
7
>>> json_loads_byteified('["I am inside a list"]')
['I am inside a list']
>>> json_loads_byteified('[[[[[[[["I am inside a big nest of lists"]]]]]]]]')
[[[[[[[['I am inside a big nest of lists']]]]]]]]
>>> json_loads_byteified('{"foo": "bar", "things": [7, {"qux": "baz", "moo": {"cow": ["milk"]}}]}')
{'things': [7, {'qux': 'baz', 'moo': {'cow': ['milk']}}], 'foo': 'bar'}
>>> json_load_byteified(open('somefile.json'))
{'more json': 'from a file'}

它是如何工作的,我为什么要使用它?

Mark Amery的函数比这些更短更清楚,那么它们的意义是什么呢?你为什么要用它们?

纯粹是为了表现。Mark的回答首先用Unicode字符串完整地解码JSON文本,然后递归地遍历整个解码后的值,将所有字符串转换为字节字符串。这有一些不好的影响:

在内存中创建整个解码结构的副本 如果您的JSON对象嵌套非常深(500级或更多),那么您将达到Python的最大递归深度

这个答案通过使用json的object_hook参数缓解了这两个性能问题。Load和json.loads。从文档中可以看到:

Object_hook是一个可选函数,它将在任何对象文字解码(dict)的结果中被调用。将使用object_hook的返回值而不是dict。此特性可用于实现自定义解码器

由于在其他字典中嵌套了许多层的字典在解码时被传递给object_hook,因此我们可以在此时对其中的任何字符串或列表进行字节化,从而避免以后需要进行深度递归。

Mark的答案不适合作为object_hook使用,因为它递归到嵌套字典中。我们通过ignore_dicts形参到_byteify来防止这个答案中的递归,除了object_hook向它传递一个新的dict给byteify时,这个参数一直被传递给它。ignore_dicts标志告诉_byteify忽略字典,因为字典已经被字节化了。

最后,我们实现的json_load_byteify和json_loads_byteify对json返回的结果调用_byteify(带ignore_dicts=True)。加载或json。加载来处理被解码的JSON文本在顶层没有字典的情况。

其他回答

我也遇到了这个问题,不得不处理JSON,我想出了一个小循环,将Unicode键转换为字符串。(GAE上的simplejson不返回字符串键。)

obj是从JSON解码的对象:

if NAME_CLASS_MAP.has_key(cls):
    kwargs = {}
    for i in obj.keys():
        kwargs[str(i)] = obj[i]
    o = NAME_CLASS_MAP[cls](**kwargs)
    o.save()

kwargs是我传递给GAE应用程序的构造函数的内容(它不喜欢**kwargs中的Unicode键)。

它不如Wells的解决方案健壮,但要小得多。

Mark (Amery)正确地指出:在JSON转储上使用PyYAML的反序列化器仅在只有ASCII时有效。至少是开箱即用。

关于PyYAML方法的两个简短评论:

永远不要对来自字段的数据使用yaml.load()。这是YAML的一个特性(!),可以执行隐藏在结构中的任意代码。 你也可以通过以下方法使它适用于非ASCII: Def to_utf8(加载器,节点): 返回loader.construct_scalar(节点).encode(“utf - 8”) yaml.add_constructor (u 'tag: yaml.org, 2002: str ', to_utf8)

但就性能而言,这与马克·艾默里的答案无法相提并论:

将一些深度嵌套的样本字典扔到这两个方法上,我得到了这个(与dt[j] = json.loads(json.dumps(m))的时间delta):

     dt[yaml.safe_load(json.dumps(m))] =~ 100 * dt[j]
     dt[byteify recursion(Mark Amery)] =~   5 * dt[j]

因此,反序列化(包括完全遍历树和编码)完全在基于c语言的JSON实现的数量级之内。我发现这非常快,而且在深度嵌套结构上比yaml加载更健壮。更少的安全错误,看yaml.load。

虽然我很喜欢一个指向c语言的转换器的指针,但byteify函数应该是默认答案。

如果JSON结构来自包含用户输入的字段,则尤其如此。因为这样你可能需要遍历你的结构——独立于你想要的内部数据结构(“unicode三明治”或字节字符串)。

Why?

Unicode正常化。给不知情的人:吃片止痛药,看看这篇文章。

所以使用byteify递归你一石二鸟:

从嵌套的JSON转储中获取字节串 让用户输入值正常化,这样你就可以在你的存储中找到东西。

在我的测试中,结果是将input.encode('utf-8')替换为unicodedata。normalize('NFC', input).encode('utf-8')甚至比没有NFC时还要快——但我猜这在很大程度上依赖于样本数据。

恐怕在simplejson库中没有任何方法可以自动实现这一点。

The scanner and decoder in simplejson are designed to produce Unicode text. To do this, the library uses a function called c_scanstring (if it's available, for speed), or py_scanstring if the C version is not available. The scanstring function is called several times by nearly every routine that simplejson has for decoding a structure that might contain text. You'd have to either monkey patch the scanstring value in simplejson.decoder, or subclass JSONDecoder and provide pretty much your own entire implementation of anything that might contain text.

然而,simplejson输出Unicode的原因是JSON规范特别提到“字符串是0个或多个Unicode字符的集合”……对Unicode的支持被假定为格式本身的一部分。simplejson的扫描字符串实现甚至扫描和解释Inicode转义(甚至错误检查格式不正确的多字节字符集表示),因此它能够可靠地将值返回给您的唯一方法是Unicode。

如果你有一个老旧的库,需要一个str,我建议你在解析后费力地搜索嵌套的数据结构(我承认这是你明确说过你想避免的…对不起),或者可能将库包装在某种外观中,在这种外观中您可以在更细粒度的级别上处理输入参数。如果数据结构确实嵌套很深,第二种方法可能比第一种方法更易于管理。

只需使用pickle而不是json来转储和加载,如下所示:

    import json
    import pickle

    d = { 'field1': 'value1', 'field2': 2, }

    json.dump(d,open("testjson.txt","w"))

    print json.load(open("testjson.txt","r"))

    pickle.dump(d,open("testpickle.txt","w"))

    print pickle.load(open("testpickle.txt","r"))

它产生的输出是(字符串和整数被正确处理):

    {u'field2': 2, u'field1': u'value1'}
    {'field2': 2, 'field1': 'value1'}

这是因为json()在字符串对象和Unicode对象之间没有区别。它们都是JavaScript中的字符串。

我认为JSON返回Unicode对象是正确的。事实上,我不会接受更少的东西,因为JavaScript字符串实际上是unicode对象(即JSON (JavaScript)字符串可以存储任何类型的unicode字符),因此在从JSON转换字符串时创建unicode对象是有意义的。普通字符串不适合,因为库必须猜测您想要的编码。

最好在任何地方都使用unicode字符串对象。因此,最好的选择是更新库,使它们能够处理Unicode对象。

但如果你真的想要字节串,只需将结果编码为你选择的编码:

>>> nl = json.loads(js)
>>> nl
[u'a', u'b']
>>> nl = [s.encode('utf-8') for s in nl]
>>> nl
['a', 'b']