我试图使用matplotlib读取RGB图像并将其转换为灰度。

在matlab中我使用这个:

img = rgb2gray(imread('image.png'));

在matplotlib教程中,没有涉及到它。他们只是阅读图像

import matplotlib.image as mpimg
img = mpimg.imread('image.png')

然后他们将数组切片,但这与我所理解的将RGB转换为灰度不是一回事。

lum_img = img[:,:,0]

我发现很难相信numpy或matplotlib没有内置函数从rgb转换为灰色。这不是图像处理中常见的操作吗?

我写了一个非常简单的函数,使用imread在5分钟内导入图像。它的效率非常低,但这就是为什么我希望内置一个专业的实现。

塞巴斯蒂安改进了我的功能,但我仍然希望找到内置的功能。

matlab (NTSC/PAL)实现:

import numpy as np

def rgb2gray(rgb):

    r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
    gray = 0.2989 * r + 0.5870 * g + 0.1140 * b

    return gray

当前回答

The tutorial is cheating because it is starting with a greyscale image encoded in RGB, so they are just slicing a single color channel and treating it as greyscale. The basic steps you need to do are to transform from the RGB colorspace to a colorspace that encodes with something approximating the luma/chroma model, such as YUV/YIQ or HSL/HSV, then slice off the luma-like channel and use that as your greyscale image. matplotlib does not appear to provide a mechanism to convert to YUV/YIQ, but it does let you convert to HSV.

尝试使用matplotlib.colors.rgb_to_hsv(img),然后从数组中切片最后一个值(V)来获取灰度。它与亮度值不完全相同,但它意味着您可以在matplotlib中完成所有操作。

背景:

http://matplotlib.sourceforge.net/api/colors_api.html http://en.wikipedia.org/wiki/HSL_and_HSV

或者,您可以使用PIL或内置的colorsys.rgb_to_yiq()来转换为具有真正亮度值的色彩空间。你也可以完全投入到你自己的光转换器中,尽管这可能有点过头了。

其他回答

image=myCamera.getImage().crop(xx,xx,xx,xx).scale(xx,xx).greyscale()

您可以直接使用灰度()进行转换。

使用这个公式

Y' = 0.299 R + 0.587 G + 0.114 B 

我们可以

import imageio
import numpy as np
import matplotlib.pyplot as plt

pic = imageio.imread('(image)')
gray = lambda rgb : np.dot(rgb[... , :3] , [0.299 , 0.587, 0.114]) 
gray = gray(pic)  
plt.imshow(gray, cmap = plt.get_cmap(name = 'gray'))

然而,将彩色图像转换为灰度图像的GIMP软件有三种算法来完成这项任务。

如果你已经在使用NumPy/SciPy,你可以使用:

scipy.ndimage。imread (file_name模式= ' L ')

在Ubuntu 16.04 LTS (Xeon E5 2670 with SSD)上运行Python 3.5,测试了1000个RGBA PNG图像(224 x 256像素)的速度。

平均运行时间

pil: 1.037秒

1040秒

Sk: 2秒120

PIL和SciPy给出了相同的numpy数组(范围从0到255)。SkImage给出了从0到1的数组。此外,颜色转换略有不同,请参阅来自CUB-200数据集的示例。

SkImage:

PIL:

SciPy:

原:

差异:

Code

Performance run_times = dict(sk=list(), pil=list(), scipy=list()) for t in range(100): start_time = time.time() for i in range(1000): z = random.choice(filenames_png) img = skimage.color.rgb2gray(skimage.io.imread(z)) run_times['sk'].append(time.time() - start_time) start_time = time.time() for i in range(1000): z = random.choice(filenames_png) img = np.array(Image.open(z).convert('L')) run_times['pil'].append(time.time() - start_time) start_time = time.time() for i in range(1000): z = random.choice(filenames_png) img = scipy.ndimage.imread(z, mode='L') run_times['scipy'].append(time.time() - start_time) for k, v in run_times.items(): print('{:5}: {:0.3f} seconds'.format(k, sum(v) / len(v))) Output z = 'Cardinal_0007_3025810472.jpg' img1 = skimage.color.rgb2gray(skimage.io.imread(z)) * 255 IPython.display.display(PIL.Image.fromarray(img1).convert('RGB')) img2 = np.array(Image.open(z).convert('L')) IPython.display.display(PIL.Image.fromarray(img2)) img3 = scipy.ndimage.imread(z, mode='L') IPython.display.display(PIL.Image.fromarray(img3)) Comparison img_diff = np.ndarray(shape=img1.shape, dtype='float32') img_diff.fill(128) img_diff += (img1 - img3) img_diff -= img_diff.min() img_diff *= (255/img_diff.max()) IPython.display.display(PIL.Image.fromarray(img_diff).convert('RGB')) Imports import skimage.color import skimage.io import random import time from PIL import Image import numpy as np import scipy.ndimage import IPython.display Versions skimage.version 0.13.0 scipy.version 0.19.1 np.version 1.13.1

我通过谷歌找到了这个问题,寻找一种将已经加载的图像转换为灰度的方法。

下面是一种使用SciPy的方法:

import scipy.misc
import scipy.ndimage

# Load an example image
# Use scipy.ndimage.imread(file_name, mode='L') if you have your own
img = scipy.misc.face()

# Convert the image
R = img[:, :, 0]
G = img[:, :, 1]
B = img[:, :, 2]
img_gray = R * 299. / 1000 + G * 587. / 1000 + B * 114. / 1000

# Show the image
scipy.misc.imshow(img_gray)