这显然很简单,但作为一个麻木的新手,我被卡住了。
我有一个CSV文件,其中包含3列,州,办公室ID,以及该办公室的销售。
我想计算给定州中每个办事处的销售额百分比(每个州所有百分比的总和为100%)。
df = pd.DataFrame({'state': ['CA', 'WA', 'CO', 'AZ'] * 3,
'office_id': list(range(1, 7)) * 2,
'sales': [np.random.randint(100000, 999999)
for _ in range(12)]})
df.groupby(['state', 'office_id']).agg({'sales': 'sum'})
这将返回:
sales
state office_id
AZ 2 839507
4 373917
6 347225
CA 1 798585
3 890850
5 454423
CO 1 819975
3 202969
5 614011
WA 2 163942
4 369858
6 959285
我似乎不知道如何“达到”集团的州级,通过合计整个州的销售来计算分数。
即通过自动匹配列名和索引名来实现操作。这段代码应该相当于@exp1orer接受答案的一个逐步版本
使用df,我将用别名state_office_sales调用它:
sales
state office_id
AZ 2 839507
4 373917
6 347225
CA 1 798585
3 890850
5 454423
CO 1 819975
3 202969
5 614011
WA 2 163942
4 369858
6 959285
State_total_sales是state_office_sales,按索引级别0(最左边)中的总和分组。
In: state_total_sales = df.groupby(level=0).sum()
state_total_sales
Out:
sales
state
AZ 2448009
CA 2832270
CO 1495486
WA 595859
因为这两个数据框架共享一个索引名和一个列名,pandas将通过共享索引找到合适的位置,例如:
In: state_office_sales / state_total_sales
Out:
sales
state office_id
AZ 2 0.448640
4 0.125865
6 0.425496
CA 1 0.288022
3 0.322169
5 0.389809
CO 1 0.206684
3 0.357891
5 0.435425
WA 2 0.321689
4 0.346325
6 0.331986
为了更好地说明这一点,这里有一个没有等价物的XX的部分总数。Pandas将根据索引和列名匹配位置,如果没有重叠,Pandas将忽略它:
In: partial_total = pd.DataFrame(
data = {'sales' : [2448009, 595859, 99999]},
index = ['AZ', 'WA', 'XX' ]
)
partial_total.index.name = 'state'
Out:
sales
state
AZ 2448009
WA 595859
XX 99999
In: state_office_sales / partial_total
Out:
sales
state office_id
AZ 2 0.448640
4 0.125865
6 0.425496
CA 1 NaN
3 NaN
5 NaN
CO 1 NaN
3 NaN
5 NaN
WA 2 0.321689
4 0.346325
6 0.331986
当没有共享索引或列时,这一点变得非常明显。这里missing_index_totals等于state_total_sales,只是它没有索引名。
In: missing_index_totals = state_total_sales.rename_axis("")
missing_index_totals
Out:
sales
AZ 2448009
CA 2832270
CO 1495486
WA 595859
In: state_office_sales / missing_index_totals
Out: ValueError: cannot join with no overlapping index names
(此解决方案的灵感来自这篇文章https://pbpython.com/pandas_transform.html)
我发现下面的解决方案是最简单的(可能是最快的)使用转换:
类的简化版本
数据转换时,可以返回一些转换后的完整版本
数据重组。对于这样的转换,输出是相同的
形状作为输入。
所以使用变换,解决方案是一行:
df['%'] = 100 * df['sales'] / df.groupby('state')['sales'].transform('sum')
如果你打印:
print(df.sort_values(['state', 'office_id']).reset_index(drop=True))
state office_id sales %
0 AZ 2 195197 9.844309
1 AZ 4 877890 44.274352
2 AZ 6 909754 45.881339
3 CA 1 614752 50.415708
4 CA 3 395340 32.421767
5 CA 5 209274 17.162525
6 CO 1 549430 42.659629
7 CO 3 457514 35.522956
8 CO 5 280995 21.817415
9 WA 2 828238 35.696929
10 WA 4 719366 31.004563
11 WA 6 772590 33.298509
import numpy as np
import pandas as pd
np.random.seed(0)
df = pd.DataFrame({'state': ['CA', 'WA', 'CO', 'AZ'] * 3,
'office_id': list(range(1, 7)) * 2,
'sales': [np.random.randint(100000, 999999) for _ in range(12)]})
df.groupby(['state', 'office_id'])['sales'].sum().rename("weightage").groupby(level = 0).transform(lambda x: x/x.sum())
df.reset_index()
输出:
state office_id weightage
0 AZ 2 0.169814
1 AZ 4 0.192500
2 AZ 6 0.637686
3 CA 1 0.193319
4 CA 3 0.338587
5 CA 5 0.468094
6 CO 1 0.368519
7 CO 3 0.198743
8 CO 5 0.432739
9 WA 2 0.347072
10 WA 4 0.355113
11 WA 6 0.297815
查找跨列或索引的百分比的最优雅方法是使用pd.crosstab。
样本数据
df = pd.DataFrame({'state': ['CA', 'WA', 'CO', 'AZ'] * 3,
'office_id': list(range(1, 7)) * 2,
'sales': [np.random.randint(100000, 999999) for _ in range(12)]})
输出数据帧是这样的
print(df)
state office_id sales
0 CA 1 764505
1 WA 2 313980
2 CO 3 558645
3 AZ 4 883433
4 CA 5 301244
5 WA 6 752009
6 CO 1 457208
7 AZ 2 259657
8 CA 3 584471
9 WA 4 122358
10 CO 5 721845
11 AZ 6 136928
只需指定要聚合的索引、列和值。normalize关键字将根据上下文计算跨索引或列的%。
result = pd.crosstab(index=df['state'],
columns=df['office_id'],
values=df['sales'],
aggfunc='sum',
normalize='index').applymap('{:.2f}%'.format)
print(result)
office_id 1 2 3 4 5 6
state
AZ 0.00% 0.20% 0.00% 0.69% 0.00% 0.11%
CA 0.46% 0.00% 0.35% 0.00% 0.18% 0.00%
CO 0.26% 0.00% 0.32% 0.00% 0.42% 0.00%
WA 0.00% 0.26% 0.00% 0.10% 0.00% 0.63%