这显然很简单,但作为一个麻木的新手,我被卡住了。

我有一个CSV文件,其中包含3列,州,办公室ID,以及该办公室的销售。

我想计算给定州中每个办事处的销售额百分比(每个州所有百分比的总和为100%)。

df = pd.DataFrame({'state': ['CA', 'WA', 'CO', 'AZ'] * 3,
                   'office_id': list(range(1, 7)) * 2,
                   'sales': [np.random.randint(100000, 999999)
                             for _ in range(12)]})

df.groupby(['state', 'office_id']).agg({'sales': 'sum'})

这将返回:

                  sales
state office_id        
AZ    2          839507
      4          373917
      6          347225
CA    1          798585
      3          890850
      5          454423
CO    1          819975
      3          202969
      5          614011
WA    2          163942
      4          369858
      6          959285

我似乎不知道如何“达到”集团的州级,通过合计整个州的销售来计算分数。


当前回答

import numpy as np
import pandas as pd
np.random.seed(0)
df = pd.DataFrame({'state': ['CA', 'WA', 'CO', 'AZ'] * 3,
               'office_id': list(range(1, 7)) * 2,
               'sales': [np.random.randint(100000, 999999) for _ in range(12)]})

df.groupby(['state', 'office_id'])['sales'].sum().rename("weightage").groupby(level = 0).transform(lambda x: x/x.sum())
df.reset_index()

输出:

    state   office_id   weightage
0   AZ  2   0.169814
1   AZ  4   0.192500
2   AZ  6   0.637686
3   CA  1   0.193319
4   CA  3   0.338587
5   CA  5   0.468094
6   CO  1   0.368519
7   CO  3   0.198743
8   CO  5   0.432739
9   WA  2   0.347072
10  WA  4   0.355113
11  WA  6   0.297815

其他回答

我知道这是一个老问题,但是对于具有大量唯一组的数据集,exp1orer的答案是非常缓慢的(可能是因为lambda)。我建立了他们的答案,把它变成一个数组计算,所以现在它非常快!下面是示例代码:

创建带有50,000个唯一组的测试数据框架

import random
import string
import pandas as pd
import numpy as np
np.random.seed(0)

# This is the total number of groups to be created
NumberOfGroups = 50000

# Create a lot of groups (random strings of 4 letters)
Group1     = [''.join(random.choice(string.ascii_uppercase) for _ in range(4)) for x in range(NumberOfGroups/10)]*10
Group2     = [''.join(random.choice(string.ascii_uppercase) for _ in range(4)) for x in range(NumberOfGroups/2)]*2
FinalGroup = [''.join(random.choice(string.ascii_uppercase) for _ in range(4)) for x in range(NumberOfGroups)]

# Make the numbers
NumbersForPercents = [np.random.randint(100, 999) for _ in range(NumberOfGroups)]

# Make the dataframe
df = pd.DataFrame({'Group 1': Group1,
                   'Group 2': Group2,
                   'Final Group': FinalGroup,
                   'Numbers I want as percents': NumbersForPercents})

当分组时,它看起来像:

                             Numbers I want as percents
Group 1 Group 2 Final Group                            
AAAH    AQYR    RMCH                                847
                XDCL                                182
        DQGO    ALVF                                132
                AVPH                                894
        OVGH    NVOO                                650
                VKQP                                857
        VNLY    HYFW                                884
                MOYH                                469
        XOOC    GIDS                                168
                HTOY                                544
AACE    HNXU    RAXK                                243
                YZNK                                750
        NOYI    NYGC                                399
                ZYCI                                614
        QKGK    CRLF                                520
                UXNA                                970
        TXAR    MLNB                                356
                NMFJ                                904
        VQYG    NPON                                504
                QPKQ                                948
...
[50000 rows x 1 columns]

百分比数组法:

# Initial grouping (basically a sorted version of df)
PreGroupby_df = df.groupby(["Group 1","Group 2","Final Group"]).agg({'Numbers I want as percents': 'sum'}).reset_index()
# Get the sum of values for the "final group", append "_Sum" to it's column name, and change it into a dataframe (.reset_index)
SumGroup_df = df.groupby(["Group 1","Group 2"]).agg({'Numbers I want as percents': 'sum'}).add_suffix('_Sum').reset_index()
# Merge the two dataframes
Percents_df = pd.merge(PreGroupby_df, SumGroup_df)
# Divide the two columns
Percents_df["Percent of Final Group"] = Percents_df["Numbers I want as percents"] / Percents_df["Numbers I want as percents_Sum"] * 100
# Drop the extra _Sum column
Percents_df.drop(["Numbers I want as percents_Sum"], inplace=True, axis=1)

这种方法大约需要0.15秒

顶部回答方法(使用lambda函数):

state_office = df.groupby(['Group 1','Group 2','Final Group']).agg({'Numbers I want as percents': 'sum'})
state_pcts = state_office.groupby(level=['Group 1','Group 2']).apply(lambda x: 100 * x / float(x.sum()))

这种方法需要大约21秒才能产生相同的结果。

结果:

      Group 1 Group 2 Final Group  Numbers I want as percents  Percent of Final Group
0        AAAH    AQYR        RMCH                         847               82.312925
1        AAAH    AQYR        XDCL                         182               17.687075
2        AAAH    DQGO        ALVF                         132               12.865497
3        AAAH    DQGO        AVPH                         894               87.134503
4        AAAH    OVGH        NVOO                         650               43.132050
5        AAAH    OVGH        VKQP                         857               56.867950
6        AAAH    VNLY        HYFW                         884               65.336290
7        AAAH    VNLY        MOYH                         469               34.663710
8        AAAH    XOOC        GIDS                         168               23.595506
9        AAAH    XOOC        HTOY                         544               76.404494

为了简洁起见,我使用SeriesGroupBy:

In [11]: c = df.groupby(['state', 'office_id'])['sales'].sum().rename("count")

In [12]: c
Out[12]:
state  office_id
AZ     2            925105
       4            592852
       6            362198
CA     1            819164
       3            743055
       5            292885
CO     1            525994
       3            338378
       5            490335
WA     2            623380
       4            441560
       6            451428
Name: count, dtype: int64

In [13]: c / c.groupby(level=0).sum()
Out[13]:
state  office_id
AZ     2            0.492037
       4            0.315321
       6            0.192643
CA     1            0.441573
       3            0.400546
       5            0.157881
CO     1            0.388271
       3            0.249779
       5            0.361949
WA     2            0.411101
       4            0.291196
       6            0.297703
Name: count, dtype: float64

对于多个组,你必须使用transform(使用Radical的df):

In [21]: c =  df.groupby(["Group 1","Group 2","Final Group"])["Numbers I want as percents"].sum().rename("count")

In [22]: c / c.groupby(level=[0, 1]).transform("sum")
Out[22]:
Group 1  Group 2  Final Group
AAHQ     BOSC     OWON           0.331006
                  TLAM           0.668994
         MQVF     BWSI           0.288961
                  FXZM           0.711039
         ODWV     NFCH           0.262395
...
Name: count, dtype: float64

这似乎比其他答案的性能稍好(对我来说,大约0.08秒,是Radical回答速度的两倍)。

df.groupby('state').office_id.value_counts(normalize = True)

我使用value_counts方法,但它返回的百分比像0.70和0.30,而不是像70和30。

更新2022 - 03

这个由caner使用变换的答案看起来比我原来的答案要好得多!

df['sales'] / df.groupby('state')['sales'].transform('sum')

感谢Paul Rougieux的评论。

原答案(2014)

Paul H的回答是正确的,您将必须创建第二个groupby对象,但是您可以用更简单的方法计算百分比——只需groupby state_office并将sales列除以它的和。复制Paul H回答的开头:

# From Paul H
import numpy as np
import pandas as pd
np.random.seed(0)
df = pd.DataFrame({'state': ['CA', 'WA', 'CO', 'AZ'] * 3,
                   'office_id': list(range(1, 7)) * 2,
                   'sales': [np.random.randint(100000, 999999)
                             for _ in range(12)]})
state_office = df.groupby(['state', 'office_id']).agg({'sales': 'sum'})
# Change: groupby state_office and divide by sum
state_pcts = state_office.groupby(level=0).apply(lambda x:
                                                 100 * x / float(x.sum()))

返回:

                     sales
state office_id           
AZ    2          16.981365
      4          19.250033
      6          63.768601
CA    1          19.331879
      3          33.858747
      5          46.809373
CO    1          36.851857
      3          19.874290
      5          43.273852
WA    2          34.707233
      4          35.511259
      6          29.781508

一行的解决方案:

df.join(
    df.groupby('state').agg(state_total=('sales', 'sum')),
    on='state'
).eval('sales / state_total')

这将返回一系列每个办公室的比率——可以单独使用,也可以分配给原始数据框架。