我如何检查一个列表是否有任何重复,并返回一个没有重复的新列表?


当前回答

到目前为止,我看到的所有保持顺序的方法要么使用朴素比较(时间复杂度最多为O(n^2)),要么使用限制于可哈希输入的重载OrderedDicts/set+list组合。下面是一个与哈希无关的O(nlogn)解决方案:

更新增加了关键参数、文档和Python 3兼容性。

# from functools import reduce <-- add this import on Python 3

def uniq(iterable, key=lambda x: x):
    """
    Remove duplicates from an iterable. Preserves order. 
    :type iterable: Iterable[Ord => A]
    :param iterable: an iterable of objects of any orderable type
    :type key: Callable[A] -> (Ord => B)
    :param key: optional argument; by default an item (A) is discarded 
    if another item (B), such that A == B, has already been encountered and taken. 
    If you provide a key, this condition changes to key(A) == key(B); the callable 
    must return orderable objects.
    """
    # Enumerate the list to restore order lately; reduce the sorted list; restore order
    def append_unique(acc, item):
        return acc if key(acc[-1][1]) == key(item[1]) else acc.append(item) or acc 
    srt_enum = sorted(enumerate(iterable), key=lambda item: key(item[1]))
    return [item[1] for item in sorted(reduce(append_unique, srt_enum, [srt_enum[0]]))] 

其他回答

这个人关心的是没有太多麻烦的订单(OrderdDict & others)。可能不是最python化的方式,也不是最短的方式,但却达到了目的:

def remove_duplicates(item_list):
    ''' Removes duplicate items from a list '''
    singles_list = []
    for element in item_list:
        if element not in singles_list:
            singles_list.append(element)
    return singles_list

另一种做法:

>>> seq = [1,2,3,'a', 'a', 1,2]
>> dict.fromkeys(seq).keys()
['a', 1, 2, 3]

如果列表是有序的,则可以使用以下方法对其进行迭代,跳过重复的值。这对于处理内存消耗低的大列表特别有用,可以避免构建dict或set的成本:

def uniq(iterator):
    prev = None
    for item in iterator:
        if item != prev:
            prev = item
            yield item

然后:

for item in uniq([1, 1, 3, 5, 5, 6]):
    print(item, end=' ')

输出将是:1 3 5 6

要返回一个列表对象,你可以这样做:

>>> print(list(uniq([1, 1, 3, 5, 5, 6])))
[1, 3, 5, 6]

这只是一个可读的函数,很容易理解,我已经使用了dict数据结构,我已经使用了一些内置函数和更好的复杂度O(n)

def undup(dup_list):
    b={}
    for i in dup_list:
        b.update({i:1})
    return b.keys()
a=["a",'b','a']
print undup(a)

免责声明:你可能会得到缩进错误(如果复制和粘贴),使用上述代码与适当的缩进粘贴之前

我已将各种建议与perfplot进行了比较。事实证明,如果输入数组没有重复的元素,所有方法的速度或多或少都一样快,与输入数据是Python列表还是NumPy数组无关。

如果输入数组很大,但只包含一个唯一元素,则set、dict和np。如果输入数据是一个列表,唯一方法是常量时间的。如果是NumPy数组,np。Unique比其他选项快10倍。

让我有点惊讶的是这些也不是常时间运算。


代码重现图:

import perfplot
import numpy as np
import matplotlib.pyplot as plt


def setup_list(n):
    # return list(np.random.permutation(np.arange(n)))
    return [0] * n


def setup_np_array(n):
    # return np.random.permutation(np.arange(n))
    return np.zeros(n, dtype=int)


def list_set(data):
    return list(set(data))


def numpy_unique(data):
    return np.unique(data)


def list_dict(data):
    return list(dict.fromkeys(data))


b = perfplot.bench(
    setup=[
        setup_list,
        setup_list,
        setup_list,
        setup_np_array,
        setup_np_array,
        setup_np_array,
    ],
    kernels=[list_set, numpy_unique, list_dict, list_set, numpy_unique, list_dict],
    labels=[
        "list(set(lst))",
        "np.unique(lst)",
        "list(dict(lst))",
        "list(set(arr))",
        "np.unique(arr)",
        "list(dict(arr))",
    ],
    n_range=[2 ** k for k in range(23)],
    xlabel="len(array)",
    equality_check=None,
)
# plt.title("input array = [0, 1, 2,..., n]")
plt.title("input array = [0, 0,..., 0]")
b.save("out.png")
b.show()