我如何检查一个列表是否有任何重复,并返回一个没有重复的新列表?
当前回答
到目前为止,我看到的所有保持顺序的方法要么使用朴素比较(时间复杂度最多为O(n^2)),要么使用限制于可哈希输入的重载OrderedDicts/set+list组合。下面是一个与哈希无关的O(nlogn)解决方案:
更新增加了关键参数、文档和Python 3兼容性。
# from functools import reduce <-- add this import on Python 3
def uniq(iterable, key=lambda x: x):
"""
Remove duplicates from an iterable. Preserves order.
:type iterable: Iterable[Ord => A]
:param iterable: an iterable of objects of any orderable type
:type key: Callable[A] -> (Ord => B)
:param key: optional argument; by default an item (A) is discarded
if another item (B), such that A == B, has already been encountered and taken.
If you provide a key, this condition changes to key(A) == key(B); the callable
must return orderable objects.
"""
# Enumerate the list to restore order lately; reduce the sorted list; restore order
def append_unique(acc, item):
return acc if key(acc[-1][1]) == key(item[1]) else acc.append(item) or acc
srt_enum = sorted(enumerate(iterable), key=lambda item: key(item[1]))
return [item[1] for item in sorted(reduce(append_unique, srt_enum, [srt_enum[0]]))]
其他回答
如果你不关心顺序,就这样做:
def remove_duplicates(l):
return list(set(l))
一个集合保证没有重复项。
有时你需要删除重复的项目,而不需要创建新的列表。例如,列表很大,或者将其作为影子副本保存
from collections import Counter
cntDict = Counter(t)
for item,cnt in cntDict.items():
for _ in range(cnt-1):
t.remove(item)
下面的代码是简单的删除重复列表
def remove_duplicates(x):
a = []
for i in x:
if i not in a:
a.append(i)
return a
print remove_duplicates([1,2,2,3,3,4])
它返回[1,2,3,4]
我用纯python函数做到了这一点。当您的项目值是JSON时,这是有效的。
[i for n, i in enumerate(items) if i not in items[n + 1 :]]
我已将各种建议与perfplot进行了比较。事实证明,如果输入数组没有重复的元素,所有方法的速度或多或少都一样快,与输入数据是Python列表还是NumPy数组无关。
如果输入数组很大,但只包含一个唯一元素,则set、dict和np。如果输入数据是一个列表,唯一方法是常量时间的。如果是NumPy数组,np。Unique比其他选项快10倍。
让我有点惊讶的是这些也不是常时间运算。
代码重现图:
import perfplot
import numpy as np
import matplotlib.pyplot as plt
def setup_list(n):
# return list(np.random.permutation(np.arange(n)))
return [0] * n
def setup_np_array(n):
# return np.random.permutation(np.arange(n))
return np.zeros(n, dtype=int)
def list_set(data):
return list(set(data))
def numpy_unique(data):
return np.unique(data)
def list_dict(data):
return list(dict.fromkeys(data))
b = perfplot.bench(
setup=[
setup_list,
setup_list,
setup_list,
setup_np_array,
setup_np_array,
setup_np_array,
],
kernels=[list_set, numpy_unique, list_dict, list_set, numpy_unique, list_dict],
labels=[
"list(set(lst))",
"np.unique(lst)",
"list(dict(lst))",
"list(set(arr))",
"np.unique(arr)",
"list(dict(arr))",
],
n_range=[2 ** k for k in range(23)],
xlabel="len(array)",
equality_check=None,
)
# plt.title("input array = [0, 1, 2,..., n]")
plt.title("input array = [0, 0,..., 0]")
b.save("out.png")
b.show()
推荐文章
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML
- django MultiValueDictKeyError错误,我如何处理它
- 如何在for循环期间修改列表条目?
- 我如何在Django中创建一个鼻涕虫?
- 数组与列表的性能
- 没有名为'django.core.urlresolvers'的模块
- 蟒蛇导出环境文件
- Django - makemigrations -未检测到任何更改
- SQLAlchemy:引擎、连接和会话差异
- 在Python Pandas中删除多个列中的所有重复行
- 更改pandas DataFrame中的特定列名
- 将Pandas多索引转换为列
- 熊猫在每组中获得最高的n个记录