在这个网站上已经有很多性能问题了,但是在我看来,几乎所有的问题都是非常具体的,而且相当狭窄。几乎所有人都重复了避免过早优化的建议。
我们假设:
代码已经正常工作了
所选择的算法对于问题的环境已经是最优的
对代码进行了测量,并隔离了有问题的例程
所有优化的尝试也将被衡量,以确保它们不会使事情变得更糟
我在这里寻找的是策略和技巧,在一个关键算法中,当没有其他事情可做,但无论如何都要挤出最后百分之几。
理想情况下,尽量让答案与语言无关,并在适用的情况下指出所建议的策略的任何缺点。
我将添加一个带有我自己最初建议的回复,并期待Stack Overflow社区能想到的任何其他东西。
首先,正如前面几个回答中提到的,了解是什么影响了您的性能——是内存、处理器、网络、数据库还是其他东西。这取决于…
...if it's memory - find one of the books written long time ago by Knuth, one of "The Art of Computer Programming" series. Most likely it's one about sorting and search - if my memory is wrong then you'll have to find out in which he talks about how to deal with slow tape data storage. Mentally transform his memory/tape pair into your pair of cache/main memory (or in pair of L1/L2 cache) respectively. Study all the tricks he describes - if you don's find something that solves your problem, then hire professional computer scientist to conduct a professional research. If your memory issue is by chance with FFT (cache misses at bit-reversed indexes when doing radix-2 butterflies) then don't hire a scientist - instead, manually optimize passes one-by-one until you're either win or get to dead end. You mentioned squeeze out up to the last few percent right? If it's few indeed you'll most likely win.
...if it's processor - switch to assembly language. Study processor specification - what takes ticks, VLIW, SIMD. Function calls are most likely replaceable tick-eaters. Learn loop transformations - pipeline, unroll. Multiplies and divisions might be replaceable / interpolated with bit shifts (multiplies by small integers might be replaceable with additions). Try tricks with shorter data - if you're lucky one instruction with 64 bits might turn out replaceable with two on 32 or even 4 on 16 or 8 on 8 bits go figure. Try also longer data - eg your float calculations might turn out slower than double ones at particular processor. If you have trigonometric stuff, fight it with pre-calculated tables; also keep in mind that sine of small value might be replaced with that value if loss of precision is within allowed limits.
...if it's network - think of compressing data you pass over it. Replace XML transfer with binary. Study protocols. Try UDP instead of TCP if you can somehow handle data loss.
...if it's database, well, go to any database forum and ask for advice. In-memory data-grid, optimizing query plan etc etc etc.
HTH:)
以下是我使用的一些快速而粗糙的优化技术。我认为这是“第一关”优化。
了解时间都花在了什么地方。是文件IO吗?是CPU时间吗?是因为网络吗?是数据库吗?如果IO不是瓶颈,优化IO是没有用的。
了解您的环境了解在哪里进行优化通常取决于开发环境。例如,在VB6中,通过引用传递比通过值传递慢,但是在C和c++中,通过引用传递要快得多。在C语言中,如果返回代码表明失败,尝试一些东西并做一些不同的事情是合理的,而在Dot Net中,捕获异常比尝试前检查有效条件要慢得多。
在频繁查询的数据库字段上构建索引。你几乎总是可以用空间来换取速度。
在要优化的循环内部,我避免了必须进行任何查找。找到循环外的偏移量和/或索引,并重用循环内的数据。
最小化IO尝试以一种减少必须读或写的次数的方式进行设计,特别是在网络连接上
减少抽象代码必须通过的抽象层越多,它就越慢。在关键循环内部,减少抽象(例如,揭示避免额外代码的低级方法)
对于带有用户界面的项目,生成一个新线程来执行较慢的任务使应用程序感觉反应更快,尽管不是。
你通常可以用空间来换取速度。如果有计算或其他密集的操作,看看是否可以在进入关键循环之前预先计算一些信息。
更多的建议:
Avoid I/O: Any I/O (disk, network, ports, etc.) is
always going to be far slower than any code that is
performing calculations, so get rid of any I/O that you do
not strictly need.
Move I/O up-front: Load up all the data you are going
to need for a calculation up-front, so that you do not
have repeated I/O waits within the core of a critical
algorithm (and maybe as a result repeated disk seeks, when
loading all the data in one hit may avoid seeking).
Delay I/O: Do not write out your results until the
calculation is over, store them in a data structure and
then dump that out in one go at the end when the hard work
is done.
Threaded I/O: For those daring enough, combine 'I/O
up-front' or 'Delay I/O' with the actual calculation by
moving the loading into a parallel thread, so that while
you are loading more data you can work on a calculation on
the data you already have, or while you calculate the next
batch of data you can simultaneously write out the results
from the last batch.
首先,正如前面几个回答中提到的,了解是什么影响了您的性能——是内存、处理器、网络、数据库还是其他东西。这取决于…
...if it's memory - find one of the books written long time ago by Knuth, one of "The Art of Computer Programming" series. Most likely it's one about sorting and search - if my memory is wrong then you'll have to find out in which he talks about how to deal with slow tape data storage. Mentally transform his memory/tape pair into your pair of cache/main memory (or in pair of L1/L2 cache) respectively. Study all the tricks he describes - if you don's find something that solves your problem, then hire professional computer scientist to conduct a professional research. If your memory issue is by chance with FFT (cache misses at bit-reversed indexes when doing radix-2 butterflies) then don't hire a scientist - instead, manually optimize passes one-by-one until you're either win or get to dead end. You mentioned squeeze out up to the last few percent right? If it's few indeed you'll most likely win.
...if it's processor - switch to assembly language. Study processor specification - what takes ticks, VLIW, SIMD. Function calls are most likely replaceable tick-eaters. Learn loop transformations - pipeline, unroll. Multiplies and divisions might be replaceable / interpolated with bit shifts (multiplies by small integers might be replaceable with additions). Try tricks with shorter data - if you're lucky one instruction with 64 bits might turn out replaceable with two on 32 or even 4 on 16 or 8 on 8 bits go figure. Try also longer data - eg your float calculations might turn out slower than double ones at particular processor. If you have trigonometric stuff, fight it with pre-calculated tables; also keep in mind that sine of small value might be replaced with that value if loss of precision is within allowed limits.
...if it's network - think of compressing data you pass over it. Replace XML transfer with binary. Study protocols. Try UDP instead of TCP if you can somehow handle data loss.
...if it's database, well, go to any database forum and ask for advice. In-memory data-grid, optimizing query plan etc etc etc.
HTH:)