我想知道以下内容在性能上是否有区别

SELECT ... FROM ... WHERE someFIELD IN(1,2,3,4)

SELECT ... FROM ... WHERE someFIELD between 0 AND 5

SELECT ... FROM ... WHERE someFIELD = 1 OR someFIELD = 2 OR someFIELD = 3 ... 

或者MySQL会像编译器优化代码一样优化SQL吗?


EDIT

根据评论中说明的原因,将AND改为OR。


当前回答

就在你以为安全的时候…

你的eq_range_index_dive_limit值是多少?特别地,你在In子句中有更多还是更少的条目?

这将不包括基准测试,但将深入了解内部工作原理。让我们使用一个工具来查看发生了什么——Optimizer Trace。

查询:SELECT * FROM canada WHERE id…

使用3个OR值,部分跟踪看起来像这样:

       "condition_processing": {
          "condition": "WHERE",
          "original_condition": "((`canada`.`id` = 296172) or (`canada`.`id` = 295093) or (`canada`.`id` = 293626))",
          "steps": [
            {
              "transformation": "equality_propagation",
              "resulting_condition": "(multiple equal(296172, `canada`.`id`) or multiple equal(295093, `canada`.`id`) or multiple equal(293626, `canada`.`id`))"
            },

...

              "analyzing_range_alternatives": {
                "range_scan_alternatives": [
                  {
                    "index": "id",
                    "ranges": [
                      "293626 <= id <= 293626",
                      "295093 <= id <= 295093",
                      "296172 <= id <= 296172"
                    ],
                    "index_dives_for_eq_ranges": true,
                    "chosen": true

...

        "refine_plan": [
          {
            "table": "`canada`",
            "pushed_index_condition": "((`canada`.`id` = 296172) or (`canada`.`id` = 295093) or (`canada`.`id` = 293626))",
            "table_condition_attached": null,
            "access_type": "range"
          }
        ]

注意颅内压是如何给予ORs的。这意味着OR没有转换成IN, InnoDB将通过ICP执行一堆=测试。(我觉得不值得考虑MyISAM。)

(这是Percona的5.6.22-71.0-log;Id是二级索引。)

现在来看带有几个值的IN()

Eq_range_index_dive_limit = 10;有8个值。

        "condition_processing": {
          "condition": "WHERE",
          "original_condition": "(`canada`.`id` in (296172,295093,293626,295573,297148,296127,295588,295810))",
          "steps": [
            {
              "transformation": "equality_propagation",
              "resulting_condition": "(`canada`.`id` in (296172,295093,293626,295573,297148,296127,295588,295810))"
            },

...

              "analyzing_range_alternatives": {
                "range_scan_alternatives": [
                  {
                    "index": "id",
                    "ranges": [
                      "293626 <= id <= 293626",
                      "295093 <= id <= 295093",
                      "295573 <= id <= 295573",
                      "295588 <= id <= 295588",
                      "295810 <= id <= 295810",
                      "296127 <= id <= 296127",
                      "296172 <= id <= 296172",
                      "297148 <= id <= 297148"
                    ],
                    "index_dives_for_eq_ranges": true,
                    "chosen": true

...

        "refine_plan": [
          {
            "table": "`canada`",
            "pushed_index_condition": "(`canada`.`id` in (296172,295093,293626,295573,297148,296127,295588,295810))",
            "table_condition_attached": null,
            "access_type": "range"
          }
        ]

注意,IN似乎没有被转换成OR。

附注:注意,常数值是排序的。这在两个方面是有益的:

通过更少的跳跃,可能会有更好的缓存,更少的I/O来获取所有的值。 如果两个类似的查询来自不同的连接,并且它们位于事务中,则更有可能导致延迟,而不是由于重叠列表而导致死锁。

最后,有很多值的IN()

      {
        "condition_processing": {
          "condition": "WHERE",
          "original_condition": "(`canada`.`id` in (293831,292259,292881,293440,292558,295792,292293,292593,294337,295430,295034,297060,293811,295587,294651,295559,293213,295742,292605,296018,294529,296711,293919,294732,294689,295540,293000,296916,294433,297112,293815,292522,296816,293320,293232,295369,291894,293700,291839,293049,292738,294895,294473,294023,294173,293019,291976,294923,294797,296958,294075,293450,296952,297185,295351,295736,296312,294330,292717,294638,294713,297176,295896,295137,296573,292236,294966,296642,296073,295903,293057,294628,292639,293803,294470,295353,297196,291752,296118,296964,296185,295338,295956,296064,295039,297201,297136,295206,295986,292172,294803,294480,294706,296975,296604,294493,293181,292526,293354,292374,292344,293744,294165,295082,296203,291918,295211,294289,294877,293120,295387))",
          "steps": [
            {
              "transformation": "equality_propagation",
              "resulting_condition": "(`canada`.`id` in (293831,292259,292881,293440,292558,295792,292293,292593,294337,295430,295034,297060,293811,295587,294651,295559,293213,295742,292605,296018,294529,296711,293919,294732,294689,295540,293000,296916,294433,297112,293815,292522,296816,293320,293232,295369,291894,293700,291839,293049,292738,294895,294473,294023,294173,293019,291976,294923,294797,296958,294075,293450,296952,297185,295351,295736,296312,294330,292717,294638,294713,297176,295896,295137,296573,292236,294966,296642,296073,295903,293057,294628,292639,293803,294470,295353,297196,291752,296118,296964,296185,295338,295956,296064,295039,297201,297136,295206,295986,292172,294803,294480,294706,296975,296604,294493,293181,292526,293354,292374,292344,293744,294165,295082,296203,291918,295211,294289,294877,293120,295387))"
            },

...

              "analyzing_range_alternatives": {
                "range_scan_alternatives": [
                  {
                    "index": "id",
                    "ranges": [
                      "291752 <= id <= 291752",
                      "291839 <= id <= 291839",
                      ...
                      "297196 <= id <= 297196",
                      "297201 <= id <= 297201"
                    ],
                    "index_dives_for_eq_ranges": false,
                    "rows": 111,
                    "chosen": true

...

        "refine_plan": [
          {
            "table": "`canada`",
            "pushed_index_condition": "(`canada`.`id` in (293831,292259,292881,293440,292558,295792,292293,292593,294337,295430,295034,297060,293811,295587,294651,295559,293213,295742,292605,296018,294529,296711,293919,294732,294689,295540,293000,296916,294433,297112,293815,292522,296816,293320,293232,295369,291894,293700,291839,293049,292738,294895,294473,294023,294173,293019,291976,294923,294797,296958,294075,293450,296952,297185,295351,295736,296312,294330,292717,294638,294713,297176,295896,295137,296573,292236,294966,296642,296073,295903,293057,294628,292639,293803,294470,295353,297196,291752,296118,296964,296185,295338,295956,296064,295039,297201,297136,295206,295986,292172,294803,294480,294706,296975,296604,294493,293181,292526,293354,292374,292344,293744,294165,295082,296203,291918,295211,294289,294877,293120,295387))",
            "table_condition_attached": null,
            "access_type": "range"
          }
        ]

旁注:我需要这个,由于跟踪的体积:

@@global.optimizer_trace_max_mem_size = 32222;

其他回答

2018: IN(…)更快。但是>= && <=比IN还要快。

这是我的基准。

我需要确定这一点,所以我对这两种方法都进行了基准测试。我始终发现IN比OR要快得多。

不要相信那些发表“意见”的人,科学就是测试和证据。

我运行了1000倍的等效查询循环(为了一致性,我使用sql_no_cache):

: 2.34969592094秒

或者:5.83781504631秒

更新: (我没有原始测试的源代码,因为它是6年前的,尽管它返回的结果与此测试相同)

为了要求一些示例代码来测试这一点,这里是最简单的可能用例。使用Eloquent来简化语法,原始的SQL等价执行相同的操作。

$t = microtime(true); 
for($i=0; $i<10000; $i++):
$q = DB::table('users')->where('id',1)
    ->orWhere('id',2)
    ->orWhere('id',3)
    ->orWhere('id',4)
    ->orWhere('id',5)
    ->orWhere('id',6)
    ->orWhere('id',7)
    ->orWhere('id',8)
    ->orWhere('id',9)
    ->orWhere('id',10)
    ->orWhere('id',11)
    ->orWhere('id',12)
    ->orWhere('id',13)
    ->orWhere('id',14)
    ->orWhere('id',15)
    ->orWhere('id',16)
    ->orWhere('id',17)
    ->orWhere('id',18)
    ->orWhere('id',19)
    ->orWhere('id',20)->get();
endfor;
$t2 = microtime(true); 
echo $t."\n".$t2."\n".($t2-$t)."\n";

1482080514.3635 1482080517.3713 3.0078368186951

$t = microtime(true); 
for($i=0; $i<10000; $i++): 
$q = DB::table('users')->whereIn('id',[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20])->get(); 
endfor; 
$t2 = microtime(true); 
echo $t."\n".$t2."\n".($t2-$t)."\n";

1482080534.0185 1482080536.178 2.1595389842987

就在你以为安全的时候…

你的eq_range_index_dive_limit值是多少?特别地,你在In子句中有更多还是更少的条目?

这将不包括基准测试,但将深入了解内部工作原理。让我们使用一个工具来查看发生了什么——Optimizer Trace。

查询:SELECT * FROM canada WHERE id…

使用3个OR值,部分跟踪看起来像这样:

       "condition_processing": {
          "condition": "WHERE",
          "original_condition": "((`canada`.`id` = 296172) or (`canada`.`id` = 295093) or (`canada`.`id` = 293626))",
          "steps": [
            {
              "transformation": "equality_propagation",
              "resulting_condition": "(multiple equal(296172, `canada`.`id`) or multiple equal(295093, `canada`.`id`) or multiple equal(293626, `canada`.`id`))"
            },

...

              "analyzing_range_alternatives": {
                "range_scan_alternatives": [
                  {
                    "index": "id",
                    "ranges": [
                      "293626 <= id <= 293626",
                      "295093 <= id <= 295093",
                      "296172 <= id <= 296172"
                    ],
                    "index_dives_for_eq_ranges": true,
                    "chosen": true

...

        "refine_plan": [
          {
            "table": "`canada`",
            "pushed_index_condition": "((`canada`.`id` = 296172) or (`canada`.`id` = 295093) or (`canada`.`id` = 293626))",
            "table_condition_attached": null,
            "access_type": "range"
          }
        ]

注意颅内压是如何给予ORs的。这意味着OR没有转换成IN, InnoDB将通过ICP执行一堆=测试。(我觉得不值得考虑MyISAM。)

(这是Percona的5.6.22-71.0-log;Id是二级索引。)

现在来看带有几个值的IN()

Eq_range_index_dive_limit = 10;有8个值。

        "condition_processing": {
          "condition": "WHERE",
          "original_condition": "(`canada`.`id` in (296172,295093,293626,295573,297148,296127,295588,295810))",
          "steps": [
            {
              "transformation": "equality_propagation",
              "resulting_condition": "(`canada`.`id` in (296172,295093,293626,295573,297148,296127,295588,295810))"
            },

...

              "analyzing_range_alternatives": {
                "range_scan_alternatives": [
                  {
                    "index": "id",
                    "ranges": [
                      "293626 <= id <= 293626",
                      "295093 <= id <= 295093",
                      "295573 <= id <= 295573",
                      "295588 <= id <= 295588",
                      "295810 <= id <= 295810",
                      "296127 <= id <= 296127",
                      "296172 <= id <= 296172",
                      "297148 <= id <= 297148"
                    ],
                    "index_dives_for_eq_ranges": true,
                    "chosen": true

...

        "refine_plan": [
          {
            "table": "`canada`",
            "pushed_index_condition": "(`canada`.`id` in (296172,295093,293626,295573,297148,296127,295588,295810))",
            "table_condition_attached": null,
            "access_type": "range"
          }
        ]

注意,IN似乎没有被转换成OR。

附注:注意,常数值是排序的。这在两个方面是有益的:

通过更少的跳跃,可能会有更好的缓存,更少的I/O来获取所有的值。 如果两个类似的查询来自不同的连接,并且它们位于事务中,则更有可能导致延迟,而不是由于重叠列表而导致死锁。

最后,有很多值的IN()

      {
        "condition_processing": {
          "condition": "WHERE",
          "original_condition": "(`canada`.`id` in (293831,292259,292881,293440,292558,295792,292293,292593,294337,295430,295034,297060,293811,295587,294651,295559,293213,295742,292605,296018,294529,296711,293919,294732,294689,295540,293000,296916,294433,297112,293815,292522,296816,293320,293232,295369,291894,293700,291839,293049,292738,294895,294473,294023,294173,293019,291976,294923,294797,296958,294075,293450,296952,297185,295351,295736,296312,294330,292717,294638,294713,297176,295896,295137,296573,292236,294966,296642,296073,295903,293057,294628,292639,293803,294470,295353,297196,291752,296118,296964,296185,295338,295956,296064,295039,297201,297136,295206,295986,292172,294803,294480,294706,296975,296604,294493,293181,292526,293354,292374,292344,293744,294165,295082,296203,291918,295211,294289,294877,293120,295387))",
          "steps": [
            {
              "transformation": "equality_propagation",
              "resulting_condition": "(`canada`.`id` in (293831,292259,292881,293440,292558,295792,292293,292593,294337,295430,295034,297060,293811,295587,294651,295559,293213,295742,292605,296018,294529,296711,293919,294732,294689,295540,293000,296916,294433,297112,293815,292522,296816,293320,293232,295369,291894,293700,291839,293049,292738,294895,294473,294023,294173,293019,291976,294923,294797,296958,294075,293450,296952,297185,295351,295736,296312,294330,292717,294638,294713,297176,295896,295137,296573,292236,294966,296642,296073,295903,293057,294628,292639,293803,294470,295353,297196,291752,296118,296964,296185,295338,295956,296064,295039,297201,297136,295206,295986,292172,294803,294480,294706,296975,296604,294493,293181,292526,293354,292374,292344,293744,294165,295082,296203,291918,295211,294289,294877,293120,295387))"
            },

...

              "analyzing_range_alternatives": {
                "range_scan_alternatives": [
                  {
                    "index": "id",
                    "ranges": [
                      "291752 <= id <= 291752",
                      "291839 <= id <= 291839",
                      ...
                      "297196 <= id <= 297196",
                      "297201 <= id <= 297201"
                    ],
                    "index_dives_for_eq_ranges": false,
                    "rows": 111,
                    "chosen": true

...

        "refine_plan": [
          {
            "table": "`canada`",
            "pushed_index_condition": "(`canada`.`id` in (293831,292259,292881,293440,292558,295792,292293,292593,294337,295430,295034,297060,293811,295587,294651,295559,293213,295742,292605,296018,294529,296711,293919,294732,294689,295540,293000,296916,294433,297112,293815,292522,296816,293320,293232,295369,291894,293700,291839,293049,292738,294895,294473,294023,294173,293019,291976,294923,294797,296958,294075,293450,296952,297185,295351,295736,296312,294330,292717,294638,294713,297176,295896,295137,296573,292236,294966,296642,296073,295903,293057,294628,292639,293803,294470,295353,297196,291752,296118,296964,296185,295338,295956,296064,295039,297201,297136,295206,295986,292172,294803,294480,294706,296975,296604,294493,293181,292526,293354,292374,292344,293744,294165,295082,296203,291918,295211,294289,294877,293120,295387))",
            "table_condition_attached": null,
            "access_type": "range"
          }
        ]

旁注:我需要这个,由于跟踪的体积:

@@global.optimizer_trace_max_mem_size = 32222;

我知道,只要在Field上有一个索引,BETWEEN就会使用它快速找到一端,然后遍历到另一端。这是最有效的。

我看过的每一个解释都是“IN(…)”和“……”或…”是可互换的,同样有效。这是您所期望的,因为优化器无法知道它们是否包含一个间隔。它也等价于单个值上的UNION ALL SELECT。

我认为BETWEEN会更快,因为它应该转换为:

Field >= 0 AND Field <= 5

我的理解是,不管怎样,一个IN语句都会被转换成一堆OR语句。IN的价值是易用性。(节省了必须多次键入每个列名,也使它更容易与现有逻辑一起使用-您不必担心and /OR优先级,因为IN是一个语句。对于一堆OR语句,你必须确保用圆括号将它们括起来,以确保它们作为一个条件进行计算。)

对你的问题唯一真正的答案是分析你的查询。然后你就会知道在你的特定情况下什么是最好的。