我有一个带有两个y轴的图,使用twinx()。我也给了线条标签,并想用legend()显示它们,但我只成功地获得了图例中一个轴的标签:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rc
rc('mathtext', default='regular')

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(time, Swdown, '-', label = 'Swdown')
ax.plot(time, Rn, '-', label = 'Rn')
ax2 = ax.twinx()
ax2.plot(time, temp, '-r', label = 'temp')
ax.legend(loc=0)
ax.grid()
ax.set_xlabel("Time (h)")
ax.set_ylabel(r"Radiation ($MJ\,m^{-2}\,d^{-1}$)")
ax2.set_ylabel(r"Temperature ($^\circ$C)")
ax2.set_ylim(0, 35)
ax.set_ylim(-20,100)
plt.show()

所以我只得到图例中第一个轴的标签,而不是第二个轴的标签“temp”。如何将第三个标签添加到图例中?


当前回答

你可以很容易地得到你想要的,在ax中添加一行:

ax.plot([], [], '-r', label = 'temp')

or

ax.plot(np.nan, '-r', label = 'temp')

这将没有任何情节,但添加一个标签的传说斧头。

我认为这是一个更简单的方法。 当你在第二个轴上只有几条线时,没有必要自动跟踪线,因为像上面那样手动固定是非常容易的。不管怎样,这取决于你需要什么。

整个代码如下:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rc
rc('mathtext', default='regular')

time = np.arange(22.)
temp = 20*np.random.rand(22)
Swdown = 10*np.random.randn(22)+40
Rn = 40*np.random.rand(22)

fig = plt.figure()
ax = fig.add_subplot(111)
ax2 = ax.twinx()

#---------- look at below -----------

ax.plot(time, Swdown, '-', label = 'Swdown')
ax.plot(time, Rn, '-', label = 'Rn')

ax2.plot(time, temp, '-r')  # The true line in ax2
ax.plot(np.nan, '-r', label = 'temp')  # Make an agent in ax

ax.legend(loc=0)

#---------------done-----------------

ax.grid()
ax.set_xlabel("Time (h)")
ax.set_ylabel(r"Radiation ($MJ\,m^{-2}\,d^{-1}$)")
ax2.set_ylabel(r"Temperature ($^\circ$C)")
ax2.set_ylim(0, 35)
ax.set_ylim(-20,100)
plt.show()

图如下:


更新:添加一个更好的版本:

ax.plot(np.nan, '-r', label = 'temp')

当plot(0,0)可能会改变轴范围时,这将什么都不会做。


另一个关于散点的例子

ax.scatter([], [], s=100, label = 'temp')  # Make an agent in ax
ax2.scatter(time, temp, s=10)  # The true scatter in ax2

ax.legend(loc=1, framealpha=1)

其他回答

我发现下面的官方matplotlib示例使用host_subplot在一个图例中显示多个y轴和所有不同的标签。没有必要变通。目前为止我找到的最好的解决办法。 http://matplotlib.org/examples/axes_grid/demo_parasite_axes2.html

from mpl_toolkits.axes_grid1 import host_subplot
import mpl_toolkits.axisartist as AA
import matplotlib.pyplot as plt

host = host_subplot(111, axes_class=AA.Axes)
plt.subplots_adjust(right=0.75)

par1 = host.twinx()
par2 = host.twinx()

offset = 60
new_fixed_axis = par2.get_grid_helper().new_fixed_axis
par2.axis["right"] = new_fixed_axis(loc="right",
                                    axes=par2,
                                    offset=(offset, 0))

par2.axis["right"].toggle(all=True)

host.set_xlim(0, 2)
host.set_ylim(0, 2)

host.set_xlabel("Distance")
host.set_ylabel("Density")
par1.set_ylabel("Temperature")
par2.set_ylabel("Velocity")

p1, = host.plot([0, 1, 2], [0, 1, 2], label="Density")
p2, = par1.plot([0, 1, 2], [0, 3, 2], label="Temperature")
p3, = par2.plot([0, 1, 2], [50, 30, 15], label="Velocity")

par1.set_ylim(0, 4)
par2.set_ylim(1, 65)

host.legend()

plt.draw()
plt.show()

从matplotlib 2.1版本开始,您可以使用图形图例。我们可以创建一个图形图例,而不是ax.legend(),它使用斧头ax的句柄生成一个图例

fig.legend(loc="upper right")

它将收集图中所有子图的所有句柄。因为它是一个图形图例,所以它将被放置在图形的角落,loc参数是相对于图形的。

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0,10)
y = np.linspace(0,10)
z = np.sin(x/3)**2*98

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(x,y, '-', label = 'Quantity 1')

ax2 = ax.twinx()
ax2.plot(x,z, '-r', label = 'Quantity 2')
fig.legend(loc="upper right")

ax.set_xlabel("x [units]")
ax.set_ylabel(r"Quantity 1")
ax2.set_ylabel(r"Quantity 2")

plt.show()

为了将图例放回坐标轴,需要提供bbox_to_anchor和bbox_transform。后者将是图例应驻留的轴的轴变换。前者可以是坐标轴坐标中给定的由loc定义的边的坐标。

fig.legend(loc="upper right", bbox_to_anchor=(1,1), bbox_transform=ax.transAxes)

你可以很容易地得到你想要的,在ax中添加一行:

ax.plot([], [], '-r', label = 'temp')

or

ax.plot(np.nan, '-r', label = 'temp')

这将没有任何情节,但添加一个标签的传说斧头。

我认为这是一个更简单的方法。 当你在第二个轴上只有几条线时,没有必要自动跟踪线,因为像上面那样手动固定是非常容易的。不管怎样,这取决于你需要什么。

整个代码如下:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rc
rc('mathtext', default='regular')

time = np.arange(22.)
temp = 20*np.random.rand(22)
Swdown = 10*np.random.randn(22)+40
Rn = 40*np.random.rand(22)

fig = plt.figure()
ax = fig.add_subplot(111)
ax2 = ax.twinx()

#---------- look at below -----------

ax.plot(time, Swdown, '-', label = 'Swdown')
ax.plot(time, Rn, '-', label = 'Rn')

ax2.plot(time, temp, '-r')  # The true line in ax2
ax.plot(np.nan, '-r', label = 'temp')  # Make an agent in ax

ax.legend(loc=0)

#---------------done-----------------

ax.grid()
ax.set_xlabel("Time (h)")
ax.set_ylabel(r"Radiation ($MJ\,m^{-2}\,d^{-1}$)")
ax2.set_ylabel(r"Temperature ($^\circ$C)")
ax2.set_ylim(0, 35)
ax.set_ylim(-20,100)
plt.show()

图如下:


更新:添加一个更好的版本:

ax.plot(np.nan, '-r', label = 'temp')

当plot(0,0)可能会改变轴范围时,这将什么都不会做。


另一个关于散点的例子

ax.scatter([], [], s=100, label = 'temp')  # Make an agent in ax
ax2.scatter(time, temp, s=10)  # The true scatter in ax2

ax.legend(loc=1, framealpha=1)

我不确定这个功能是否是新的,但你也可以使用get_legend_handles_labels()方法,而不是自己跟踪行和标签:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rc
rc('mathtext', default='regular')

pi = np.pi

# fake data
time = np.linspace (0, 25, 50)
temp = 50 / np.sqrt (2 * pi * 3**2) \
        * np.exp (-((time - 13)**2 / (3**2))**2) + 15
Swdown = 400 / np.sqrt (2 * pi * 3**2) * np.exp (-((time - 13)**2 / (3**2))**2)
Rn = Swdown - 10

fig = plt.figure()
ax = fig.add_subplot(111)

ax.plot(time, Swdown, '-', label = 'Swdown')
ax.plot(time, Rn, '-', label = 'Rn')
ax2 = ax.twinx()
ax2.plot(time, temp, '-r', label = 'temp')

# ask matplotlib for the plotted objects and their labels
lines, labels = ax.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax2.legend(lines + lines2, labels + labels2, loc=0)

ax.grid()
ax.set_xlabel("Time (h)")
ax.set_ylabel(r"Radiation ($MJ\,m^{-2}\,d^{-1}$)")
ax2.set_ylabel(r"Temperature ($^\circ$C)")
ax2.set_ylim(0, 35)
ax.set_ylim(-20,100)
plt.show()

如果您正在使用Seaborn,您可以这样做:

g = sns.barplot('arguments blah blah')
g2 = sns.lineplot('arguments blah blah')
h1,l1 = g.get_legend_handles_labels()
h2,l2 = g2.get_legend_handles_labels()
#Merging two legends
g.legend(h1+h2, l1+l2, title_fontsize='10')
#removes the second legend
g2.get_legend().remove()