如何在Python中生成介于0和9(含)之间的随机整数?

例如,0、1、2、3、4、5、6、7、8、9


当前回答

从随机模块的文档页面:

警告:此模块的伪随机生成器不应用于安全目的。如果需要,请使用os.urantom()或SystemRandom需要密码安全的伪随机数发生器。

Python 2.4中引入的random.SystemRandom被认为是加密安全的。它在Python 3.7.1中仍然可用,在编写时是最新的。

>>> import string
>>> string.digits
'0123456789'
>>> import random
>>> random.SystemRandom().choice(string.digits)
'8'
>>> random.SystemRandom().choice(string.digits)
'1'
>>> random.SystemRandom().choice(string.digits)
'8'
>>> random.SystemRandom().choice(string.digits)
'5'

除了字符串数字,还可以对其他一些答案使用范围,也许还可以理解。根据您的需要进行混合和搭配。

其他回答

虽然许多帖子都演示了如何获得一个随机整数,但最初的问题是如何生成随机整数(复数):

如何在Python中生成介于0和9(含)之间的随机整数?

为了清楚起见,这里我们演示如何获得多个随机整数。

鉴于

>>> import random


lo = 0
hi = 10
size = 5

Code

多个随机整数

# A
>>> [lo + int(random.random() * (hi - lo)) for _ in range(size)]
[5, 6, 1, 3, 0]

# B
>>> [random.randint(lo, hi) for _ in range(size)]
[9, 7, 0, 7, 3]

# C
>>> [random.randrange(lo, hi) for _ in range(size)]
[8, 3, 6, 8, 7]

# D
>>> lst = list(range(lo, hi))
>>> random.shuffle(lst)
>>> [lst[i] for i in range(size)]
[6, 8, 2, 5, 1]

# E
>>> [random.choice(range(lo, hi)) for _ in range(size)]
[2, 1, 6, 9, 5]

随机整数样本

# F
>>> random.choices(range(lo, hi), k=size)
[3, 2, 0, 8, 2]

# G
>>> random.sample(range(lo, hi), k=size)
[4, 5, 1, 2, 3]

细节

一些帖子演示了如何本机生成多个随机整数。1以下是一些解决隐含问题的选项:

A: random.random返回范围为[0.0,1.0)的随机浮点值B: random.randit返回一个随机整数N,使得a<=N<=BC: random.randrange别名到randint(a,b+1)D: random.shuffle将序列打乱E: random.choice从非空序列中返回一个随机元素F: random.choices从总体中返回k个选择(带替换,Python 3.6+)G: random.sample从总体中返回k个唯一选择(无替换):2

另请参阅R.Hettinger使用随机模块中的示例讨论分块和别名。

以下是标准库和Numpy中一些随机函数的比较:

| | random                | numpy.random                     |
|-|-----------------------|----------------------------------|
|A| random()              | random()                         |
|B| randint(low, high)    | randint(low, high)               |
|C| randrange(low, high)  | randint(low, high)               |
|D| shuffle(seq)          | shuffle(seq)                     |
|E| choice(seq)           | choice(seq)                      |
|F| choices(seq, k)       | choice(seq, size)                |
|G| sample(seq, k)        | choice(seq, size, replace=False) |

您还可以将Numpy中的许多分布中的一个快速转换为随机整数的样本。3

示例

>>> np.random.normal(loc=5, scale=10, size=size).astype(int)
array([17, 10,  3,  1, 16])

>>> np.random.poisson(lam=1, size=size).astype(int)
array([1, 3, 0, 2, 0])

>>> np.random.lognormal(mean=0.0, sigma=1.0, size=size).astype(int)
array([1, 3, 1, 5, 1])

1Namely@John Lawrence Aspden、@S T Mohammed、@SiddTheKid、@user14372、@zangw等。2@prashanth提到这个模块显示一个整数。3由@Siddharth Satpathy演示

我会尝试以下方法之一:

1.>numpy.random.randint

import numpy as np
X1 = np.random.randint(low=0, high=10, size=(15,))

print (X1)
>>> array([3, 0, 9, 0, 5, 7, 6, 9, 6, 7, 9, 6, 6, 9, 8])

2.>numpy.random.uniform

import numpy as np
X2 = np.random.uniform(low=0, high=10, size=(15,)).astype(int)

print (X2)
>>> array([8, 3, 6, 9, 1, 0, 3, 6, 3, 3, 1, 2, 4, 0, 4])

3.>numpy.random.ochoice

import numpy as np
X3 = np.random.choice(a=10, size=15 )

print (X3)
>>> array([1, 4, 0, 2, 5, 2, 7, 5, 0, 0, 8, 4, 4, 0, 9])

4.>随机范围

from random import randrange
X4 = [randrange(10) for i in range(15)]

print (X4)
>>> [2, 1, 4, 1, 2, 8, 8, 6, 4, 1, 0, 5, 8, 3, 5]

5.>随机随机

from random import randint
X5 = [randint(0, 9) for i in range(0, 15)]

print (X5)
>>> [6, 2, 6, 9, 5, 3, 2, 3, 3, 4, 4, 7, 4, 9, 6]

速度:

► np.random.uniform和np.randm.randint比np.rando.choice、random.randrange和random.randint快得多(大约快10倍)。

%timeit np.random.randint(low=0, high=10, size=(15,))
>> 1.64 µs ± 7.83 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

%timeit np.random.uniform(low=0, high=10, size=(15,)).astype(int)
>> 2.15 µs ± 38.6 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

%timeit np.random.choice(a=10, size=15 )
>> 21 µs ± 629 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

%timeit [randrange(10) for i in range(15)]
>> 12.9 µs ± 60.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

%timeit [randint(0, 9) for i in range(0, 15)]
>> 20 µs ± 386 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

笔记:

1.>np.random.randint在半开区间(低,高)上生成随机整数。2.>np.random.uniform在半开区间(低,高)上生成均匀分布的数。3.>np.randomchoice在半开区间(低,高)上生成一个随机样本,就好像参数a是np.arange(n)一样。4.>randrange(stop)从range(start,stop,step)生成一个随机数。5.>randint(a,b)返回随机整数N,使得a<=N<=b。6.>astype(int)将numpy数组强制转换为int数据类型。我选择了size=(15,)。这将为您提供长度为15的numpy数组。

生成0到9之间的随机整数。

import numpy
X = numpy.random.randint(0, 10, size=10)
print(X)

输出:

[4 8 0 4 9 6 9 9 0 7]

secrets模块是Python 3.6中的新模块。这比用于加密或安全用途的随机模块要好。

要随机打印0-9范围内的整数,请执行以下操作:

from secrets import randbelow
print(randbelow(10))

有关详细信息,请参见PEP 506。

注意,这确实取决于用例。使用随机模块,您可以设置一个随机种子,这对于伪随机但可重复的结果很有用,而这对于机密模块是不可能的。

随机模块也更快(在Python 3.9上测试):

>>> timeit.timeit("random.randrange(10)", setup="import random")
0.4920286529999771
>>> timeit.timeit("secrets.randbelow(10)", setup="import secrets")
2.0670733770000425

尝试random.randrange:

from random import randrange
print(randrange(10))