我把Project Euler中的第12题作为一个编程练习,并比较了我在C、Python、Erlang和Haskell中的实现(当然不是最优的)。为了获得更高的执行时间,我搜索第一个因数超过1000的三角形数,而不是原始问题中所述的500。
结果如下:
C:
lorenzo@enzo:~/erlang$ gcc -lm -o euler12.bin euler12.c
lorenzo@enzo:~/erlang$ time ./euler12.bin
842161320
real 0m11.074s
user 0m11.070s
sys 0m0.000s
Python:
lorenzo@enzo:~/erlang$ time ./euler12.py
842161320
real 1m16.632s
user 1m16.370s
sys 0m0.250s
Python与PyPy:
lorenzo@enzo:~/Downloads/pypy-c-jit-43780-b590cf6de419-linux64/bin$ time ./pypy /home/lorenzo/erlang/euler12.py
842161320
real 0m13.082s
user 0m13.050s
sys 0m0.020s
Erlang:
lorenzo@enzo:~/erlang$ erlc euler12.erl
lorenzo@enzo:~/erlang$ time erl -s euler12 solve
Erlang R13B03 (erts-5.7.4) [source] [64-bit] [smp:4:4] [rq:4] [async-threads:0] [hipe] [kernel-poll:false]
Eshell V5.7.4 (abort with ^G)
1> 842161320
real 0m48.259s
user 0m48.070s
sys 0m0.020s
Haskell:
lorenzo@enzo:~/erlang$ ghc euler12.hs -o euler12.hsx
[1 of 1] Compiling Main ( euler12.hs, euler12.o )
Linking euler12.hsx ...
lorenzo@enzo:~/erlang$ time ./euler12.hsx
842161320
real 2m37.326s
user 2m37.240s
sys 0m0.080s
简介:
C: 100%
Python: 692% (PyPy占118%)
Erlang: 436%(135%归功于RichardC)
Haskell: 1421%
我认为C语言有一个很大的优势,因为它使用长来进行计算,而不是像其他三种那样使用任意长度的整数。它也不需要首先加载运行时(其他的呢?)
问题1:
Erlang, Python和Haskell是否会因为使用任意长度的整数而降低速度,或者只要值小于MAXINT就不会?
问题2:
哈斯克尔为什么这么慢?是否有一个编译器标志关闭刹车或它是我的实现?(后者是很有可能的,因为Haskell对我来说是一本有七个印章的书。)
问题3:
你能否给我一些提示,如何在不改变我确定因素的方式的情况下优化这些实现?以任何方式优化:更好、更快、更“原生”的语言。
编辑:
问题4:
我的函数实现是否允许LCO(最后调用优化,也就是尾递归消除),从而避免在调用堆栈中添加不必要的帧?
虽然我不得不承认我的Haskell和Erlang知识非常有限,但我确实试图用这四种语言实现尽可能相似的相同算法。
使用的源代码:
#include <stdio.h>
#include <math.h>
int factorCount (long n)
{
double square = sqrt (n);
int isquare = (int) square;
int count = isquare == square ? -1 : 0;
long candidate;
for (candidate = 1; candidate <= isquare; candidate ++)
if (0 == n % candidate) count += 2;
return count;
}
int main ()
{
long triangle = 1;
int index = 1;
while (factorCount (triangle) < 1001)
{
index ++;
triangle += index;
}
printf ("%ld\n", triangle);
}
#! /usr/bin/env python3.2
import math
def factorCount (n):
square = math.sqrt (n)
isquare = int (square)
count = -1 if isquare == square else 0
for candidate in range (1, isquare + 1):
if not n % candidate: count += 2
return count
triangle = 1
index = 1
while factorCount (triangle) < 1001:
index += 1
triangle += index
print (triangle)
-module (euler12).
-compile (export_all).
factorCount (Number) -> factorCount (Number, math:sqrt (Number), 1, 0).
factorCount (_, Sqrt, Candidate, Count) when Candidate > Sqrt -> Count;
factorCount (_, Sqrt, Candidate, Count) when Candidate == Sqrt -> Count + 1;
factorCount (Number, Sqrt, Candidate, Count) ->
case Number rem Candidate of
0 -> factorCount (Number, Sqrt, Candidate + 1, Count + 2);
_ -> factorCount (Number, Sqrt, Candidate + 1, Count)
end.
nextTriangle (Index, Triangle) ->
Count = factorCount (Triangle),
if
Count > 1000 -> Triangle;
true -> nextTriangle (Index + 1, Triangle + Index + 1)
end.
solve () ->
io:format ("~p~n", [nextTriangle (1, 1) ] ),
halt (0).
factorCount number = factorCount' number isquare 1 0 - (fromEnum $ square == fromIntegral isquare)
where square = sqrt $ fromIntegral number
isquare = floor square
factorCount' number sqrt candidate count
| fromIntegral candidate > sqrt = count
| number `mod` candidate == 0 = factorCount' number sqrt (candidate + 1) (count + 2)
| otherwise = factorCount' number sqrt (candidate + 1) count
nextTriangle index triangle
| factorCount triangle > 1000 = triangle
| otherwise = nextTriangle (index + 1) (triangle + index + 1)
main = print $ nextTriangle 1 1
更多关于C版本的数字和解释。显然这么多年来没人这么做过。记得给这个答案点赞,这样它就可以放在最上面,让每个人都能看到和学习。
第一步:作者程序的基准
笔记本电脑的规格:
CPU i3 M380 (931 MHz -最大省电模式)
4 gb内存
Win7 64位
微软Visual Studio 2012终极版
Cygwin与gcc 4.9.3
Python 2.7.10
命令:
compiling on VS x64 command prompt > `for /f %f in ('dir /b *.c') do cl /O2 /Ot /Ox %f -o %f_x64_vs2012.exe`
compiling on cygwin with gcc x64 > `for f in ./*.c; do gcc -m64 -O3 $f -o ${f}_x64_gcc.exe ; done`
time (unix tools) using cygwin > `for f in ./*.exe; do echo "----------"; echo $f ; time $f ; done`
.
----------
$ time python ./original.py
real 2m17.748s
user 2m15.783s
sys 0m0.093s
----------
$ time ./original_x86_vs2012.exe
real 0m8.377s
user 0m0.015s
sys 0m0.000s
----------
$ time ./original_x64_vs2012.exe
real 0m8.408s
user 0m0.000s
sys 0m0.015s
----------
$ time ./original_x64_gcc.exe
real 0m20.951s
user 0m20.732s
sys 0m0.030s
文件名为:integertype_architecture_compiler.exe
Integertype目前与原始程序相同(稍后详细介绍)
架构是x86或x64,取决于编译器设置
编译器是GCC或vs2012
第二步:调查、改进和再次基准
VS比gcc快250%。这两个编译器应该给出类似的速度。显然,代码或编译器选项有问题。让我们调查!
首先要注意的是整数类型。转换可能很昂贵,一致性对于更好的代码生成和优化很重要。所有整数都应该是相同的类型。
它现在是int和long的混合体。我们要改进这一点。使用哪种类型?最快的。必须对它们进行基准测试!
----------
$ time ./int_x86_vs2012.exe
real 0m8.440s
user 0m0.016s
sys 0m0.015s
----------
$ time ./int_x64_vs2012.exe
real 0m8.408s
user 0m0.016s
sys 0m0.015s
----------
$ time ./int32_x86_vs2012.exe
real 0m8.408s
user 0m0.000s
sys 0m0.015s
----------
$ time ./int32_x64_vs2012.exe
real 0m8.362s
user 0m0.000s
sys 0m0.015s
----------
$ time ./int64_x86_vs2012.exe
real 0m18.112s
user 0m0.000s
sys 0m0.015s
----------
$ time ./int64_x64_vs2012.exe
real 0m18.611s
user 0m0.000s
sys 0m0.015s
----------
$ time ./long_x86_vs2012.exe
real 0m8.393s
user 0m0.015s
sys 0m0.000s
----------
$ time ./long_x64_vs2012.exe
real 0m8.440s
user 0m0.000s
sys 0m0.015s
----------
$ time ./uint32_x86_vs2012.exe
real 0m8.362s
user 0m0.000s
sys 0m0.015s
----------
$ time ./uint32_x64_vs2012.exe
real 0m8.393s
user 0m0.015s
sys 0m0.015s
----------
$ time ./uint64_x86_vs2012.exe
real 0m15.428s
user 0m0.000s
sys 0m0.015s
----------
$ time ./uint64_x64_vs2012.exe
real 0m15.725s
user 0m0.015s
sys 0m0.015s
----------
$ time ./int_x64_gcc.exe
real 0m8.531s
user 0m8.329s
sys 0m0.015s
----------
$ time ./int32_x64_gcc.exe
real 0m8.471s
user 0m8.345s
sys 0m0.000s
----------
$ time ./int64_x64_gcc.exe
real 0m20.264s
user 0m20.186s
sys 0m0.015s
----------
$ time ./long_x64_gcc.exe
real 0m20.935s
user 0m20.809s
sys 0m0.015s
----------
$ time ./uint32_x64_gcc.exe
real 0m8.393s
user 0m8.346s
sys 0m0.015s
----------
$ time ./uint64_x64_gcc.exe
real 0m16.973s
user 0m16.879s
sys 0m0.030s
整数类型是int long int32_t uint32_t int64_t和uint64_t from #include <stdint.h>
C语言中有很多整数类型,还有一些带符号/无符号的可以使用,还有编译为x86或x64的选择(不要与实际的整数大小混淆)。要编译和运行^^的版本太多了
第三步:理解数字
最终结论:
32位整数比64位整数快200%
无符号64位整数比有符号64位快25%(不幸的是,我对此没有解释)
陷阱问题:“C语言中int和long的大小是多少?”
正确答案是:C中int和long的大小没有很好的定义!
来自C规范:
Int至少是32位
Long至少是int型
从gcc手册页(-m32和-m64标志):
32位环境将int、long和指针设置为32位,并生成可在任何i386系统上运行的代码。
64位环境将int设置为32位,long设置为64位,指针设置为64位,并为AMD的x86-64架构生成代码。
来自MSDN文档(数据类型范围)https://msdn.microsoft.com/en-us/library/s3f49ktz%28v=vs.110%29.aspx:
Int, 4字节,也是有符号的
Long, 4字节,也称为Long int和带符号的Long int
总结一下:吸取的教训
32位整数比64位整数快。
标准整数类型在C和c++中都没有很好地定义,它们取决于编译器和体系结构。当你需要一致性和可预测性时,使用uint32_t整数族从#include <stdint.h>。
速度问题解决。所有其他语言都落后百分之百,C和c++又赢了!他们总是这样。接下来的改进将是使用OpenMP:D进行多线程处理
尝试:
package main
import "fmt"
import "math"
func main() {
var n, m, c int
for i := 1; ; i++ {
n, m, c = i * (i + 1) / 2, int(math.Sqrt(float64(n))), 0
for f := 1; f < m; f++ {
if n % f == 0 { c++ }
}
c *= 2
if m * m == n { c ++ }
if c > 1001 {
fmt.Println(n)
break
}
}
}
我得到:
原始版本:9.1690 100%
Go: 8.2520 111%
但使用:
package main
import (
"math"
"fmt"
)
// Sieve of Eratosthenes
func PrimesBelow(limit int) []int {
switch {
case limit < 2:
return []int{}
case limit == 2:
return []int{2}
}
sievebound := (limit - 1) / 2
sieve := make([]bool, sievebound+1)
crosslimit := int(math.Sqrt(float64(limit))-1) / 2
for i := 1; i <= crosslimit; i++ {
if !sieve[i] {
for j := 2 * i * (i + 1); j <= sievebound; j += 2*i + 1 {
sieve[j] = true
}
}
}
plimit := int(1.3*float64(limit)) / int(math.Log(float64(limit)))
primes := make([]int, plimit)
p := 1
primes[0] = 2
for i := 1; i <= sievebound; i++ {
if !sieve[i] {
primes[p] = 2*i + 1
p++
if p >= plimit {
break
}
}
}
last := len(primes) - 1
for i := last; i > 0; i-- {
if primes[i] != 0 {
break
}
last = i
}
return primes[0:last]
}
func main() {
fmt.Println(p12())
}
// Requires PrimesBelow from utils.go
func p12() int {
n, dn, cnt := 3, 2, 0
primearray := PrimesBelow(1000000)
for cnt <= 1001 {
n++
n1 := n
if n1%2 == 0 {
n1 /= 2
}
dn1 := 1
for i := 0; i < len(primearray); i++ {
if primearray[i]*primearray[i] > n1 {
dn1 *= 2
break
}
exponent := 1
for n1%primearray[i] == 0 {
exponent++
n1 /= primearray[i]
}
if exponent > 1 {
dn1 *= exponent
}
if n1 == 1 {
break
}
}
cnt = dn * dn1
dn = dn1
}
return n * (n - 1) / 2
}
我得到:
原始版本:9.1690 100%
Thaumkid的c版本:0.1060 8650%
首发版本:8.2520 111%
第二围棋版本:0.0230 39865%
我还尝试了Python3.6和pypy3.3-5.5-alpha:
原版本:8.629 100%
Thaumkid的c版本:0.109 7916%
python: 54.795 16%
Pypy3.3-5.5-alpha: 13.291 65%
然后用下面的代码我得到:
原版本:8.629 100%
Thaumkid的c版本:0.109 8650%
Python3.6: 1.489 580%
Pypy3.3-5.5-alpha: 0.582 1483%
def D(N):
if N == 1: return 1
sqrtN = int(N ** 0.5)
nf = 1
for d in range(2, sqrtN + 1):
if N % d == 0:
nf = nf + 1
return 2 * nf - (1 if sqrtN**2 == N else 0)
L = 1000
Dt, n = 0, 0
while Dt <= L:
t = n * (n + 1) // 2
Dt = D(n/2)*D(n+1) if n%2 == 0 else D(n)*D((n+1)/2)
n = n + 1
print (t)