我把Project Euler中的第12题作为一个编程练习,并比较了我在C、Python、Erlang和Haskell中的实现(当然不是最优的)。为了获得更高的执行时间,我搜索第一个因数超过1000的三角形数,而不是原始问题中所述的500。

结果如下:

C:

lorenzo@enzo:~/erlang$ gcc -lm -o euler12.bin euler12.c
lorenzo@enzo:~/erlang$ time ./euler12.bin
842161320

real    0m11.074s
user    0m11.070s
sys 0m0.000s

Python:

lorenzo@enzo:~/erlang$ time ./euler12.py 
842161320

real    1m16.632s
user    1m16.370s
sys 0m0.250s

Python与PyPy:

lorenzo@enzo:~/Downloads/pypy-c-jit-43780-b590cf6de419-linux64/bin$ time ./pypy /home/lorenzo/erlang/euler12.py 
842161320

real    0m13.082s
user    0m13.050s
sys 0m0.020s

Erlang:

lorenzo@enzo:~/erlang$ erlc euler12.erl 
lorenzo@enzo:~/erlang$ time erl -s euler12 solve
Erlang R13B03 (erts-5.7.4) [source] [64-bit] [smp:4:4] [rq:4] [async-threads:0] [hipe] [kernel-poll:false]

Eshell V5.7.4  (abort with ^G)
1> 842161320

real    0m48.259s
user    0m48.070s
sys 0m0.020s

Haskell:

lorenzo@enzo:~/erlang$ ghc euler12.hs -o euler12.hsx
[1 of 1] Compiling Main             ( euler12.hs, euler12.o )
Linking euler12.hsx ...
lorenzo@enzo:~/erlang$ time ./euler12.hsx 
842161320

real    2m37.326s
user    2m37.240s
sys 0m0.080s

简介:

C: 100% Python: 692% (PyPy占118%) Erlang: 436%(135%归功于RichardC) Haskell: 1421%

我认为C语言有一个很大的优势,因为它使用长来进行计算,而不是像其他三种那样使用任意长度的整数。它也不需要首先加载运行时(其他的呢?)

问题1: Erlang, Python和Haskell是否会因为使用任意长度的整数而降低速度,或者只要值小于MAXINT就不会?

问题2: 哈斯克尔为什么这么慢?是否有一个编译器标志关闭刹车或它是我的实现?(后者是很有可能的,因为Haskell对我来说是一本有七个印章的书。)

问题3: 你能否给我一些提示,如何在不改变我确定因素的方式的情况下优化这些实现?以任何方式优化:更好、更快、更“原生”的语言。

编辑:

问题4: 我的函数实现是否允许LCO(最后调用优化,也就是尾递归消除),从而避免在调用堆栈中添加不必要的帧?

虽然我不得不承认我的Haskell和Erlang知识非常有限,但我确实试图用这四种语言实现尽可能相似的相同算法。


使用的源代码:

#include <stdio.h>
#include <math.h>

int factorCount (long n)
{
    double square = sqrt (n);
    int isquare = (int) square;
    int count = isquare == square ? -1 : 0;
    long candidate;
    for (candidate = 1; candidate <= isquare; candidate ++)
        if (0 == n % candidate) count += 2;
    return count;
}

int main ()
{
    long triangle = 1;
    int index = 1;
    while (factorCount (triangle) < 1001)
    {
        index ++;
        triangle += index;
    }
    printf ("%ld\n", triangle);
}

#! /usr/bin/env python3.2

import math

def factorCount (n):
    square = math.sqrt (n)
    isquare = int (square)
    count = -1 if isquare == square else 0
    for candidate in range (1, isquare + 1):
        if not n % candidate: count += 2
    return count

triangle = 1
index = 1
while factorCount (triangle) < 1001:
    index += 1
    triangle += index

print (triangle)

-module (euler12).
-compile (export_all).

factorCount (Number) -> factorCount (Number, math:sqrt (Number), 1, 0).

factorCount (_, Sqrt, Candidate, Count) when Candidate > Sqrt -> Count;

factorCount (_, Sqrt, Candidate, Count) when Candidate == Sqrt -> Count + 1;

factorCount (Number, Sqrt, Candidate, Count) ->
    case Number rem Candidate of
        0 -> factorCount (Number, Sqrt, Candidate + 1, Count + 2);
        _ -> factorCount (Number, Sqrt, Candidate + 1, Count)
    end.

nextTriangle (Index, Triangle) ->
    Count = factorCount (Triangle),
    if
        Count > 1000 -> Triangle;
        true -> nextTriangle (Index + 1, Triangle + Index + 1)  
    end.

solve () ->
    io:format ("~p~n", [nextTriangle (1, 1) ] ),
    halt (0).

factorCount number = factorCount' number isquare 1 0 - (fromEnum $ square == fromIntegral isquare)
    where square = sqrt $ fromIntegral number
          isquare = floor square

factorCount' number sqrt candidate count
    | fromIntegral candidate > sqrt = count
    | number `mod` candidate == 0 = factorCount' number sqrt (candidate + 1) (count + 2)
    | otherwise = factorCount' number sqrt (candidate + 1) count

nextTriangle index triangle
    | factorCount triangle > 1000 = triangle
    | otherwise = nextTriangle (index + 1) (triangle + index + 1)

main = print $ nextTriangle 1 1

当前回答

在x86_64 Core2 Duo (2.5GHz)机器上使用GHC 7.0.3, gcc 4.4.6, Linux 2.6.29,对Haskell使用GHC -O2 - flvm - force-recomp编译,对C使用gcc -O3 -lm编译。

Your C routine runs in 8.4 seconds (faster than your run probably because of -O3) The Haskell solution runs in 36 seconds (due to the -O2 flag) Your factorCount' code isn't explicitly typed and defaulting to Integer (thanks to Daniel for correcting my misdiagnosis here!). Giving an explicit type signature (which is standard practice anyway) using Int and the time changes to 11.1 seconds in factorCount' you have needlessly called fromIntegral. A fix results in no change though (the compiler is smart, lucky for you). You used mod where rem is faster and sufficient. This changes the time to 8.5 seconds. factorCount' is constantly applying two extra arguments that never change (number, sqrt). A worker/wrapper transformation gives us:

 $ time ./so
 842161320  

 real    0m7.954s  
 user    0m7.944s  
 sys     0m0.004s  

没错,7.95秒。始终比C方案快半秒。没有- flvm标志,我仍然得到8.182秒,所以NCG后端在这种情况下也做得很好。

结论:Haskell非常棒。

生成的代码

factorCount number = factorCount' number isquare 1 0 - (fromEnum $ square == fromIntegral isquare)
    where square = sqrt $ fromIntegral number
          isquare = floor square

factorCount' :: Int -> Int -> Int -> Int -> Int
factorCount' number sqrt candidate0 count0 = go candidate0 count0
  where
  go candidate count
    | candidate > sqrt = count
    | number `rem` candidate == 0 = go (candidate + 1) (count + 2)
    | otherwise = go (candidate + 1) count

nextTriangle index triangle
    | factorCount triangle > 1000 = triangle
    | otherwise = nextTriangle (index + 1) (triangle + index + 1)

main = print $ nextTriangle 1 1

编辑:现在我们已经探讨了这个问题,让我们来解决问题

问题1:erlang、python和haskell是否会因为使用 任意长度的整数,只要值更小 比MAXINT ?

在Haskell中,使用Integer比Int慢,但慢多少取决于执行的计算。幸运的是(对于64位机器)Int就足够了。出于可移植性的考虑,你可能应该重写我的代码,使用Int64或Word64 (C不是唯一的语言长)。

问题2:为什么haskell这么慢?有编译器标志吗 关闭刹车还是我的实现?(后者相当 就像haskell对我来说是一本有七个印章的书一样。) 问题3:你能给我一些建议吗 实现而不改变我确定因子的方式? 以任何方式优化:更好、更快、更“原生”的语言。

这就是我上面所回答的。答案是

0)通过-O2进行优化 1)尽可能使用快速(特别是不可装箱的)类型 2) rem not mod(一个经常被遗忘的优化)和 3)工人/包装器转换(可能是最常见的优化)。

问题4:我的功能实现是否允许LCO,因此 避免添加不必要的帧到调用堆栈?

是的,这不是问题所在。干得好,很高兴你考虑到这一点。

其他回答

在x86_64 Core2 Duo (2.5GHz)机器上使用GHC 7.0.3, gcc 4.4.6, Linux 2.6.29,对Haskell使用GHC -O2 - flvm - force-recomp编译,对C使用gcc -O3 -lm编译。

Your C routine runs in 8.4 seconds (faster than your run probably because of -O3) The Haskell solution runs in 36 seconds (due to the -O2 flag) Your factorCount' code isn't explicitly typed and defaulting to Integer (thanks to Daniel for correcting my misdiagnosis here!). Giving an explicit type signature (which is standard practice anyway) using Int and the time changes to 11.1 seconds in factorCount' you have needlessly called fromIntegral. A fix results in no change though (the compiler is smart, lucky for you). You used mod where rem is faster and sufficient. This changes the time to 8.5 seconds. factorCount' is constantly applying two extra arguments that never change (number, sqrt). A worker/wrapper transformation gives us:

 $ time ./so
 842161320  

 real    0m7.954s  
 user    0m7.944s  
 sys     0m0.004s  

没错,7.95秒。始终比C方案快半秒。没有- flvm标志,我仍然得到8.182秒,所以NCG后端在这种情况下也做得很好。

结论:Haskell非常棒。

生成的代码

factorCount number = factorCount' number isquare 1 0 - (fromEnum $ square == fromIntegral isquare)
    where square = sqrt $ fromIntegral number
          isquare = floor square

factorCount' :: Int -> Int -> Int -> Int -> Int
factorCount' number sqrt candidate0 count0 = go candidate0 count0
  where
  go candidate count
    | candidate > sqrt = count
    | number `rem` candidate == 0 = go (candidate + 1) (count + 2)
    | otherwise = go (candidate + 1) count

nextTriangle index triangle
    | factorCount triangle > 1000 = triangle
    | otherwise = nextTriangle (index + 1) (triangle + index + 1)

main = print $ nextTriangle 1 1

编辑:现在我们已经探讨了这个问题,让我们来解决问题

问题1:erlang、python和haskell是否会因为使用 任意长度的整数,只要值更小 比MAXINT ?

在Haskell中,使用Integer比Int慢,但慢多少取决于执行的计算。幸运的是(对于64位机器)Int就足够了。出于可移植性的考虑,你可能应该重写我的代码,使用Int64或Word64 (C不是唯一的语言长)。

问题2:为什么haskell这么慢?有编译器标志吗 关闭刹车还是我的实现?(后者相当 就像haskell对我来说是一本有七个印章的书一样。) 问题3:你能给我一些建议吗 实现而不改变我确定因子的方式? 以任何方式优化:更好、更快、更“原生”的语言。

这就是我上面所回答的。答案是

0)通过-O2进行优化 1)尽可能使用快速(特别是不可装箱的)类型 2) rem not mod(一个经常被遗忘的优化)和 3)工人/包装器转换(可能是最常见的优化)。

问题4:我的功能实现是否允许LCO,因此 避免添加不必要的帧到调用堆栈?

是的,这不是问题所在。干得好,很高兴你考虑到这一点。

我把“Jannich Brendle”版本改成了1000,而不是500。并列出euler12.bin, euler12.bin的结果。话务量,p12dist.erl。两个erl代码都使用'+native'进行编译。

zhengs-MacBook-Pro:workspace zhengzhibin$ time erl -noshell -s p12dist start
The result is: 842161320.

real    0m3.879s
user    0m14.553s
sys     0m0.314s
zhengs-MacBook-Pro:workspace zhengzhibin$ time erl -noshell -s euler12 solve
842161320

real    0m10.125s
user    0m10.078s
sys     0m0.046s
zhengs-MacBook-Pro:workspace zhengzhibin$ time ./euler12.bin 
842161320

real    0m5.370s
user    0m5.328s
sys     0m0.004s
zhengs-MacBook-Pro:workspace zhengzhibin$

使用Haskell,您真的不需要显式地考虑递归。

factorCount number = foldr factorCount' 0 [1..isquare] -
                     (fromEnum $ square == fromIntegral isquare)
    where
      square = sqrt $ fromIntegral number
      isquare = floor square
      factorCount' candidate
        | number `rem` candidate == 0 = (2 +)
        | otherwise = id

triangles :: [Int]
triangles = scanl1 (+) [1,2..]

main = print . head $ dropWhile ((< 1001) . factorCount) triangles

在上面的代码中,我用普通的列表操作替换了@Thomas回答中的显式递归。代码仍然做着完全相同的事情,而不需要我们担心尾部递归。它运行(~ 7.49秒)比@Thomas回答的版本(~ 7.04秒)在我的机器上运行GHC 7.6.2,而来自@Raedwulf的C版本运行~ 3.15秒。GHC似乎在过去一年中有所改善。

PS:我知道这是一个老问题,我从谷歌搜索中偶然发现了它(我忘了我在搜索什么了,现在…)只是想评论一下关于LCO的问题,并表达我对Haskell的总体感受。我想对上面的答案进行注释,但是注释不允许代码块。

通过使用Haskell包中的一些函数,可以大大加快Haskell实现的速度。 在这种情况下,我使用了质数,它只是安装了'cabal安装质数';)

import Data.Numbers.Primes
import Data.List

triangleNumbers = scanl1 (+) [1..]
nDivisors n = product $ map ((+1) . length) (group (primeFactors n))
answer = head $ filter ((> 500) . nDivisors) triangleNumbers

main :: IO ()
main = putStrLn $ "First triangle number to have over 500 divisors: " ++ (show answer)

计时:

您的原始程序:

PS> measure-command { bin\012_slow.exe }

TotalSeconds      : 16.3807409
TotalMilliseconds : 16380.7409

改进的实现

PS> measure-command { bin\012.exe }

TotalSeconds      : 0.0383436
TotalMilliseconds : 38.3436

正如你所看到的,在同一台机器上,这台机器运行38毫秒,而你的机器运行16秒:)

编译命令:

ghc -O2 012.hs -o bin\012.exe
ghc -O2 012_slow.hs -o bin\012_slow.exe

在Python优化方面,除了使用PyPy(对代码进行零更改即可获得令人印象深刻的加速)之外,还可以使用PyPy的翻译工具链编译与rpython兼容的版本,或者使用Cython构建扩展模块,在我的测试中,这两种工具都比C版本快,而Cython模块的速度几乎是C版本的两倍。作为参考,我包括C和PyPy基准测试结果:

C(编译gcc -O3 -lm)

% time ./euler12-c 
842161320

./euler12-c  11.95s 
 user 0.00s 
 system 99% 
 cpu 11.959 total

PyPy 1.5

% time pypy euler12.py
842161320
pypy euler12.py  
16.44s user 
0.01s system 
99% cpu 16.449 total

RPython(使用最新的PyPy修订版,c2f583445aee)

% time ./euler12-rpython-c
842161320
./euler12-rpy-c  
10.54s user 0.00s 
system 99% 
cpu 10.540 total

崇拜0.15

% time python euler12-cython.py
842161320
python euler12-cython.py  
6.27s user 0.00s 
system 99% 
cpu 6.274 total

RPython版本有几个关键的变化。要转换成一个独立的程序,您需要定义目标,在本例中是主函数。它被期望接受sys。Argv作为它唯一的参数,并且需要返回一个int。你可以使用translate.py, % translate.py euler12-rpython.py来翻译它,它可以翻译成C语言并为你编译它。

# euler12-rpython.py

import math, sys

def factorCount(n):
    square = math.sqrt(n)
    isquare = int(square)
    count = -1 if isquare == square else 0
    for candidate in xrange(1, isquare + 1):
        if not n % candidate: count += 2
    return count

def main(argv):
    triangle = 1
    index = 1
    while factorCount(triangle) < 1001:
        index += 1
        triangle += index
    print triangle
    return 0

if __name__ == '__main__':
    main(sys.argv)

def target(*args):
    return main, None

Cython版本被重写为扩展模块_euler12。我从一个普通的python文件中导入并调用它。_euler12。Pyx本质上与您的版本相同,只是有一些额外的静态类型声明。setup.py有一个正常的样板来构建扩展,使用python setup.py build_ext——inplace。

# _euler12.pyx
from libc.math cimport sqrt

cdef int factorCount(int n):
    cdef int candidate, isquare, count
    cdef double square
    square = sqrt(n)
    isquare = int(square)
    count = -1 if isquare == square else 0
    for candidate in range(1, isquare + 1):
        if not n % candidate: count += 2
    return count

cpdef main():
    cdef int triangle = 1, index = 1
    while factorCount(triangle) < 1001:
        index += 1
        triangle += index
    print triangle

# euler12-cython.py
import _euler12
_euler12.main()

# setup.py
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

ext_modules = [Extension("_euler12", ["_euler12.pyx"])]

setup(
  name = 'Euler12-Cython',
  cmdclass = {'build_ext': build_ext},
  ext_modules = ext_modules
)

老实说,我对RPython或Cython都没有什么经验,对结果感到惊喜。如果您正在使用CPython,那么在Cython扩展模块中编写cpu密集型代码似乎是优化程序的一种非常简单的方法。