我把Project Euler中的第12题作为一个编程练习,并比较了我在C、Python、Erlang和Haskell中的实现(当然不是最优的)。为了获得更高的执行时间,我搜索第一个因数超过1000的三角形数,而不是原始问题中所述的500。
结果如下:
C:
lorenzo@enzo:~/erlang$ gcc -lm -o euler12.bin euler12.c
lorenzo@enzo:~/erlang$ time ./euler12.bin
842161320
real 0m11.074s
user 0m11.070s
sys 0m0.000s
Python:
lorenzo@enzo:~/erlang$ time ./euler12.py
842161320
real 1m16.632s
user 1m16.370s
sys 0m0.250s
Python与PyPy:
lorenzo@enzo:~/Downloads/pypy-c-jit-43780-b590cf6de419-linux64/bin$ time ./pypy /home/lorenzo/erlang/euler12.py
842161320
real 0m13.082s
user 0m13.050s
sys 0m0.020s
Erlang:
lorenzo@enzo:~/erlang$ erlc euler12.erl
lorenzo@enzo:~/erlang$ time erl -s euler12 solve
Erlang R13B03 (erts-5.7.4) [source] [64-bit] [smp:4:4] [rq:4] [async-threads:0] [hipe] [kernel-poll:false]
Eshell V5.7.4 (abort with ^G)
1> 842161320
real 0m48.259s
user 0m48.070s
sys 0m0.020s
Haskell:
lorenzo@enzo:~/erlang$ ghc euler12.hs -o euler12.hsx
[1 of 1] Compiling Main ( euler12.hs, euler12.o )
Linking euler12.hsx ...
lorenzo@enzo:~/erlang$ time ./euler12.hsx
842161320
real 2m37.326s
user 2m37.240s
sys 0m0.080s
简介:
C: 100%
Python: 692% (PyPy占118%)
Erlang: 436%(135%归功于RichardC)
Haskell: 1421%
我认为C语言有一个很大的优势,因为它使用长来进行计算,而不是像其他三种那样使用任意长度的整数。它也不需要首先加载运行时(其他的呢?)
问题1:
Erlang, Python和Haskell是否会因为使用任意长度的整数而降低速度,或者只要值小于MAXINT就不会?
问题2:
哈斯克尔为什么这么慢?是否有一个编译器标志关闭刹车或它是我的实现?(后者是很有可能的,因为Haskell对我来说是一本有七个印章的书。)
问题3:
你能否给我一些提示,如何在不改变我确定因素的方式的情况下优化这些实现?以任何方式优化:更好、更快、更“原生”的语言。
编辑:
问题4:
我的函数实现是否允许LCO(最后调用优化,也就是尾递归消除),从而避免在调用堆栈中添加不必要的帧?
虽然我不得不承认我的Haskell和Erlang知识非常有限,但我确实试图用这四种语言实现尽可能相似的相同算法。
使用的源代码:
#include <stdio.h>
#include <math.h>
int factorCount (long n)
{
double square = sqrt (n);
int isquare = (int) square;
int count = isquare == square ? -1 : 0;
long candidate;
for (candidate = 1; candidate <= isquare; candidate ++)
if (0 == n % candidate) count += 2;
return count;
}
int main ()
{
long triangle = 1;
int index = 1;
while (factorCount (triangle) < 1001)
{
index ++;
triangle += index;
}
printf ("%ld\n", triangle);
}
#! /usr/bin/env python3.2
import math
def factorCount (n):
square = math.sqrt (n)
isquare = int (square)
count = -1 if isquare == square else 0
for candidate in range (1, isquare + 1):
if not n % candidate: count += 2
return count
triangle = 1
index = 1
while factorCount (triangle) < 1001:
index += 1
triangle += index
print (triangle)
-module (euler12).
-compile (export_all).
factorCount (Number) -> factorCount (Number, math:sqrt (Number), 1, 0).
factorCount (_, Sqrt, Candidate, Count) when Candidate > Sqrt -> Count;
factorCount (_, Sqrt, Candidate, Count) when Candidate == Sqrt -> Count + 1;
factorCount (Number, Sqrt, Candidate, Count) ->
case Number rem Candidate of
0 -> factorCount (Number, Sqrt, Candidate + 1, Count + 2);
_ -> factorCount (Number, Sqrt, Candidate + 1, Count)
end.
nextTriangle (Index, Triangle) ->
Count = factorCount (Triangle),
if
Count > 1000 -> Triangle;
true -> nextTriangle (Index + 1, Triangle + Index + 1)
end.
solve () ->
io:format ("~p~n", [nextTriangle (1, 1) ] ),
halt (0).
factorCount number = factorCount' number isquare 1 0 - (fromEnum $ square == fromIntegral isquare)
where square = sqrt $ fromIntegral number
isquare = floor square
factorCount' number sqrt candidate count
| fromIntegral candidate > sqrt = count
| number `mod` candidate == 0 = factorCount' number sqrt (candidate + 1) (count + 2)
| otherwise = factorCount' number sqrt (candidate + 1) count
nextTriangle index triangle
| factorCount triangle > 1000 = triangle
| otherwise = nextTriangle (index + 1) (triangle + index + 1)
main = print $ nextTriangle 1 1
更多关于C版本的数字和解释。显然这么多年来没人这么做过。记得给这个答案点赞,这样它就可以放在最上面,让每个人都能看到和学习。
第一步:作者程序的基准
笔记本电脑的规格:
CPU i3 M380 (931 MHz -最大省电模式)
4 gb内存
Win7 64位
微软Visual Studio 2012终极版
Cygwin与gcc 4.9.3
Python 2.7.10
命令:
compiling on VS x64 command prompt > `for /f %f in ('dir /b *.c') do cl /O2 /Ot /Ox %f -o %f_x64_vs2012.exe`
compiling on cygwin with gcc x64 > `for f in ./*.c; do gcc -m64 -O3 $f -o ${f}_x64_gcc.exe ; done`
time (unix tools) using cygwin > `for f in ./*.exe; do echo "----------"; echo $f ; time $f ; done`
.
----------
$ time python ./original.py
real 2m17.748s
user 2m15.783s
sys 0m0.093s
----------
$ time ./original_x86_vs2012.exe
real 0m8.377s
user 0m0.015s
sys 0m0.000s
----------
$ time ./original_x64_vs2012.exe
real 0m8.408s
user 0m0.000s
sys 0m0.015s
----------
$ time ./original_x64_gcc.exe
real 0m20.951s
user 0m20.732s
sys 0m0.030s
文件名为:integertype_architecture_compiler.exe
Integertype目前与原始程序相同(稍后详细介绍)
架构是x86或x64,取决于编译器设置
编译器是GCC或vs2012
第二步:调查、改进和再次基准
VS比gcc快250%。这两个编译器应该给出类似的速度。显然,代码或编译器选项有问题。让我们调查!
首先要注意的是整数类型。转换可能很昂贵,一致性对于更好的代码生成和优化很重要。所有整数都应该是相同的类型。
它现在是int和long的混合体。我们要改进这一点。使用哪种类型?最快的。必须对它们进行基准测试!
----------
$ time ./int_x86_vs2012.exe
real 0m8.440s
user 0m0.016s
sys 0m0.015s
----------
$ time ./int_x64_vs2012.exe
real 0m8.408s
user 0m0.016s
sys 0m0.015s
----------
$ time ./int32_x86_vs2012.exe
real 0m8.408s
user 0m0.000s
sys 0m0.015s
----------
$ time ./int32_x64_vs2012.exe
real 0m8.362s
user 0m0.000s
sys 0m0.015s
----------
$ time ./int64_x86_vs2012.exe
real 0m18.112s
user 0m0.000s
sys 0m0.015s
----------
$ time ./int64_x64_vs2012.exe
real 0m18.611s
user 0m0.000s
sys 0m0.015s
----------
$ time ./long_x86_vs2012.exe
real 0m8.393s
user 0m0.015s
sys 0m0.000s
----------
$ time ./long_x64_vs2012.exe
real 0m8.440s
user 0m0.000s
sys 0m0.015s
----------
$ time ./uint32_x86_vs2012.exe
real 0m8.362s
user 0m0.000s
sys 0m0.015s
----------
$ time ./uint32_x64_vs2012.exe
real 0m8.393s
user 0m0.015s
sys 0m0.015s
----------
$ time ./uint64_x86_vs2012.exe
real 0m15.428s
user 0m0.000s
sys 0m0.015s
----------
$ time ./uint64_x64_vs2012.exe
real 0m15.725s
user 0m0.015s
sys 0m0.015s
----------
$ time ./int_x64_gcc.exe
real 0m8.531s
user 0m8.329s
sys 0m0.015s
----------
$ time ./int32_x64_gcc.exe
real 0m8.471s
user 0m8.345s
sys 0m0.000s
----------
$ time ./int64_x64_gcc.exe
real 0m20.264s
user 0m20.186s
sys 0m0.015s
----------
$ time ./long_x64_gcc.exe
real 0m20.935s
user 0m20.809s
sys 0m0.015s
----------
$ time ./uint32_x64_gcc.exe
real 0m8.393s
user 0m8.346s
sys 0m0.015s
----------
$ time ./uint64_x64_gcc.exe
real 0m16.973s
user 0m16.879s
sys 0m0.030s
整数类型是int long int32_t uint32_t int64_t和uint64_t from #include <stdint.h>
C语言中有很多整数类型,还有一些带符号/无符号的可以使用,还有编译为x86或x64的选择(不要与实际的整数大小混淆)。要编译和运行^^的版本太多了
第三步:理解数字
最终结论:
32位整数比64位整数快200%
无符号64位整数比有符号64位快25%(不幸的是,我对此没有解释)
陷阱问题:“C语言中int和long的大小是多少?”
正确答案是:C中int和long的大小没有很好的定义!
来自C规范:
Int至少是32位
Long至少是int型
从gcc手册页(-m32和-m64标志):
32位环境将int、long和指针设置为32位,并生成可在任何i386系统上运行的代码。
64位环境将int设置为32位,long设置为64位,指针设置为64位,并为AMD的x86-64架构生成代码。
来自MSDN文档(数据类型范围)https://msdn.microsoft.com/en-us/library/s3f49ktz%28v=vs.110%29.aspx:
Int, 4字节,也是有符号的
Long, 4字节,也称为Long int和带符号的Long int
总结一下:吸取的教训
32位整数比64位整数快。
标准整数类型在C和c++中都没有很好地定义,它们取决于编译器和体系结构。当你需要一致性和可预测性时,使用uint32_t整数族从#include <stdint.h>。
速度问题解决。所有其他语言都落后百分之百,C和c++又赢了!他们总是这样。接下来的改进将是使用OpenMP:D进行多线程处理
问题1:Erlang、Python和Haskell是否会因为使用
任意长度的整数,只要值更小
比MAXINT ?
对于Erlang,第一个问题的答案是否定的。最后一个问题可以通过适当地使用Erlang来回答,如下所示:
http://bredsaal.dk/learning-erlang-using-projecteuler-net
由于它比您最初的C示例要快,我猜它会有很多问题,因为其他人已经详细讨论过了。
这个Erlang模块在一个便宜的上网本上执行大约5秒…它使用erlang中的网络线程模型,并演示了如何利用事件模型。它可以分布在许多节点上。而且速度很快。不是我的代码。
-module(p12dist).
-author("Jannich Brendle, jannich@bredsaal.dk, http://blog.bredsaal.dk").
-compile(export_all).
server() ->
server(1).
server(Number) ->
receive {getwork, Worker_PID} -> Worker_PID ! {work,Number,Number+100},
server(Number+101);
{result,T} -> io:format("The result is: \~w.\~n", [T]);
_ -> server(Number)
end.
worker(Server_PID) ->
Server_PID ! {getwork, self()},
receive {work,Start,End} -> solve(Start,End,Server_PID)
end,
worker(Server_PID).
start() ->
Server_PID = spawn(p12dist, server, []),
spawn(p12dist, worker, [Server_PID]),
spawn(p12dist, worker, [Server_PID]),
spawn(p12dist, worker, [Server_PID]),
spawn(p12dist, worker, [Server_PID]).
solve(N,End,_) when N =:= End -> no_solution;
solve(N,End,Server_PID) ->
T=round(N*(N+1)/2),
case (divisor(T,round(math:sqrt(T))) > 500) of
true ->
Server_PID ! {result,T};
false ->
solve(N+1,End,Server_PID)
end.
divisors(N) ->
divisor(N,round(math:sqrt(N))).
divisor(_,0) -> 1;
divisor(N,I) ->
case (N rem I) =:= 0 of
true ->
2+divisor(N,I-1);
false ->
divisor(N,I-1)
end.
下面的测试发生在Intel(R) Atom(TM) CPU N270 @ 1.60GHz上
~$ time erl -noshell -s p12dist start
The result is: 76576500.
^C
BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
(v)ersion (k)ill (D)b-tables (d)istribution
a
real 0m5.510s
user 0m5.836s
sys 0m0.152s
只是为了好玩。下面是一个更“原生”的Haskell实现:
import Control.Applicative
import Control.Monad
import Data.Either
import Math.NumberTheory.Powers.Squares
isInt :: RealFrac c => c -> Bool
isInt = (==) <$> id <*> fromInteger . round
intSqrt :: (Integral a) => a -> Int
--intSqrt = fromIntegral . floor . sqrt . fromIntegral
intSqrt = fromIntegral . integerSquareRoot'
factorize :: Int -> [Int]
factorize 1 = []
factorize n = first : factorize (quot n first)
where first = (!! 0) $ [a | a <- [2..intSqrt n], rem n a == 0] ++ [n]
factorize2 :: Int -> [(Int,Int)]
factorize2 = foldl (\ls@((val,freq):xs) y -> if val == y then (val,freq+1):xs else (y,1):ls) [(0,0)] . factorize
numDivisors :: Int -> Int
numDivisors = foldl (\acc (_,y) -> acc * (y+1)) 1 <$> factorize2
nextTriangleNumber :: (Int,Int) -> (Int,Int)
nextTriangleNumber (n,acc) = (n+1,acc+n+1)
forward :: Int -> (Int, Int) -> Either (Int, Int) (Int, Int)
forward k val@(n,acc) = if numDivisors acc > k then Left val else Right (nextTriangleNumber val)
problem12 :: Int -> (Int, Int)
problem12 n = (!!0) . lefts . scanl (>>=) (forward n (1,1)) . repeat . forward $ n
main = do
let (n,val) = problem12 1000
print val
使用ghc -O3,它在我的机器上持续运行0.55-0.58秒(1.73GHz Core i7)。
C版本中一个更有效的factorCount函数:
int factorCount (int n)
{
int count = 1;
int candidate,tmpCount;
while (n % 2 == 0) {
count++;
n /= 2;
}
for (candidate = 3; candidate < n && candidate * candidate < n; candidate += 2)
if (n % candidate == 0) {
tmpCount = 1;
do {
tmpCount++;
n /= candidate;
} while (n % candidate == 0);
count*=tmpCount;
}
if (n > 1)
count *= 2;
return count;
}
在main中使用gcc -O3 -lm将long类型更改为int类型,该程序始终在0.31-0.35秒内运行。
如果您利用第n个三角形数= n*(n+1)/2,并且n和(n+1)具有完全不同的质因数分解,则可以使两者运行得更快,因此可以将每个一半的因数数相乘,以得到整体的因数数。以下几点:
int main ()
{
int triangle = 0,count1,count2 = 1;
do {
count1 = count2;
count2 = ++triangle % 2 == 0 ? factorCount(triangle+1) : factorCount((triangle+1)/2);
} while (count1*count2 < 1001);
printf ("%lld\n", ((long long)triangle)*(triangle+1)/2);
}
将c代码的运行时间减少到0.17-0.19秒,它可以处理更大的搜索——大于10000个因数在我的机器上大约需要43秒。我给感兴趣的读者留下了类似的haskell加速。