有人能解释一下数据挖掘中分类和聚类的区别吗?

如果可以,请给出两者的例子以理解主旨。


当前回答

分类 —预测类别标签 -根据训练集和类标签属性中的值(类标签)对数据进行分类(构造模型) —使用该模型对新数据进行分类

集群:数据对象的集合 —同一集群内彼此相似 —与其他集群中的对象不同

其他回答

摘自《驯象人在行动》一书,我认为它很好地解释了两者的区别:

分类算法与聚类算法(如k-means算法)相关,但仍有很大不同。 分类算法是监督学习的一种形式,与无监督学习相反,无监督学习发生在聚类算法中。 监督学习算法是一种给出包含目标变量期望值的例子。无监督算法不会得到想要的答案,而是必须自己找到一些合理的答案。

分类和聚类之间的主要区别是: 分类是借助类标签对数据进行分类的过程。另一方面,聚类类似于分类,但没有预定义的类标签。 分类与监督学习相适应。与此相反,聚类也被称为无监督学习。 分类方法提供训练样本,聚类方法不提供训练数据。

希望这对你有所帮助!

机器学习或AI在很大程度上是通过它执行/完成的任务来感知的。

在我看来,通过在任务的概念上思考聚类和分类,可以真正帮助理解两者之间的区别。

聚类是对事物进行分组,分类是给事物贴上标签。

让我们假设你在一个派对大厅里,所有的男人都穿着西装,女人都穿着长袍。

现在,你问你的朋友几个问题:

你好,你能帮我分组吗?

你的朋友可能给出的答案有:

1:他可以根据性别分组,男性或女性

2:他可以根据人的衣服来分组,一个穿西装,一个穿长袍

他可以根据头发的颜色把人分类

他可以把人按年龄分组,等等。

你的朋友有很多方法可以完成这个任务。

当然,你可以通过提供额外的信息来影响他的决策过程,比如:

你能帮我把这些人按性别(或年龄,或头发颜色或衣服等)分组吗?

Q2:

在第二季度之前,你需要做一些准备工作。

你必须教导或通知你的朋友,这样他才能做出明智的决定。假设你对你的朋友说:

留长头发的人是女人。 留短发的人是男人。

Q2。现在,你指着一个长头发的人问你的朋友:这是一个男人还是一个女人?

你能想到的唯一答案是:女人。

当然,聚会上也可以有长发的男人和短发的女人。但是,根据你提供给你朋友的知识,答案是正确的。你可以通过教你的朋友如何区分这两者来进一步改进这个过程。

在上面的例子中,

Q1表示集群完成的任务。

在聚类中,你向算法(你的朋友)提供数据(人),并要求它对数据进行分组。

现在,由算法来决定什么是分组的最佳方式?(性别、肤色或年龄组别)。

同样,你可以通过提供额外的输入来影响算法的决策。

Q2表示分类完成的任务。

在那里,你给你的算法(你的朋友)一些数据(人),称为训练数据,并让他学习哪些数据对应哪个标签(男性或女性)。然后,您将算法指向某些数据,称为测试数据,并要求它确定它是男性还是女性。你的教学越好,预测就越准。

在Q2或Classification中的Pre-work只是训练你的模型,这样它就可以学习如何区分。在聚类或Q1中,这个前期工作是分组的一部分。

希望这能帮助到一些人。

谢谢

通过聚类,可以用所需的属性(如数量、形状和提取的聚类的其他属性)对数据进行分组。而在分类中,组的数量和形状是固定的。 大多数聚类算法都给出了聚类个数作为参数。然而,有一些方法可以找出合适的集群数量。

分类——数据集可以有不同的组/类。红色,绿色和黑色。分类将试图找到将它们划分为不同类别的规则。

聚类——如果一个数据集没有任何类,而你想把它们放在某个类/分组中,你就可以进行聚类。上面紫色的圆圈。

如果分类规则不好,你就会在测试中出现错误分类,或者你的规则不够正确。 如果聚类不好,你会有很多异常值。不能落在任何集群中的数据点。