我想删除这个数据帧中的行:

a)在所有列中包含NAs。下面是我的示例数据帧。

             gene hsap mmul mmus rnor cfam
1 ENSG00000208234    0   NA   NA   NA   NA
2 ENSG00000199674    0   2    2    2    2
3 ENSG00000221622    0   NA   NA   NA   NA
4 ENSG00000207604    0   NA   NA   1    2
5 ENSG00000207431    0   NA   NA   NA   NA
6 ENSG00000221312    0   1    2    3    2

基本上,我想获得如下所示的数据帧。

             gene hsap mmul mmus rnor cfam
2 ENSG00000199674    0   2    2    2    2
6 ENSG00000221312    0   1    2    3    2

b)只在某些列中包含NAs,所以我也可以得到这个结果:

             gene hsap mmul mmus rnor cfam
2 ENSG00000199674    0   2    2    2    2
4 ENSG00000207604    0   NA   NA   1    2
6 ENSG00000221312    0   1    2    3    2

当前回答

我的猜测是,这个问题可以用这样一种更优雅的方式解决:

  m <- matrix(1:25, ncol = 5)
  m[c(1, 6, 13, 25)] <- NA
  df <- data.frame(m)
  library(dplyr) 
  df %>%
  filter_all(any_vars(is.na(.)))
  #>   X1 X2 X3 X4 X5
  #> 1 NA NA 11 16 21
  #> 2  3  8 NA 18 23
  #> 3  5 10 15 20 NA

其他回答

我的猜测是,这个问题可以用这样一种更优雅的方式解决:

  m <- matrix(1:25, ncol = 5)
  m[c(1, 6, 13, 25)] <- NA
  df <- data.frame(m)
  library(dplyr) 
  df %>%
  filter_all(any_vars(is.na(.)))
  #>   X1 X2 X3 X4 X5
  #> 1 NA NA 11 16 21
  #> 2  3  8 NA 18 23
  #> 3  5 10 15 20 NA

假设dat作为您的数据帧,预期的输出可以使用

1. rowsums

> dat[!rowSums((is.na(dat))),]
             gene hsap mmul mmus rnor cfam
2 ENSG00000199674    0   2    2    2    2
6 ENSG00000221312    0   1    2    3    2

2.拉普兰人

> dat[!Reduce('|',lapply(dat,is.na)),]
             gene hsap mmul mmus rnor cfam
2 ENSG00000199674    0   2    2    2    2
6 ENSG00000221312    0   1    2    3    2

Tidyr有一个新函数drop_na:

library(tidyr)
df %>% drop_na()
#              gene hsap mmul mmus rnor cfam
# 2 ENSG00000199674    0    2    2    2    2
# 6 ENSG00000221312    0    1    2    3    2
df %>% drop_na(rnor, cfam)
#              gene hsap mmul mmus rnor cfam
# 2 ENSG00000199674    0    2    2    2    2
# 4 ENSG00000207604    0   NA   NA    1    2
# 6 ENSG00000221312    0    1    2    3    2

使用dplyr包,我们可以过滤NA如下:

dplyr::filter(df,  !is.na(columnname))

如果你只想删除所有列中有NAs的行,下面是解决方案:

df %>%
    filter(!if_all(everything(), ~  is.na(.)))