我很想听听你对实现社交活动流的最佳方式(Facebook就是最著名的例子)的看法。涉及的问题/挑战有:
不同类型的活动(张贴,评论..)
不同类型的对象(帖子,评论,照片..)
1-n个不同角色的用户(“用户x回复了用户y对用户Z帖子的评论”)
同一活动项的不同视图(“您评论了..”vs。“你的朋友x评论”vs。"用户x评论说.."3个“评论”活动的表示)
. .还有更多,特别是如果你把它提高到一个高度复杂的水平,比如,把几个活动项目合并成一个(“用户x, y和z评论了那张照片”)。
任何关于模式、论文等关于最灵活、有效和强大的方法来实现这样一个系统、数据模型等的想法或建议都将受到欢迎。
尽管大多数问题与平台无关,但我最终有可能在Ruby on Rails上实现这样一个系统
我使用了与heyman类似的方法——一个非规范化的表,其中包含将在给定的活动流中显示的所有数据。它适用于活动有限的小型站点。
如上所述,随着站点的增长,它很可能面临可伸缩性问题。就我个人而言,我现在并不担心规模问题。我以后再考虑这个问题。
Facebook显然在扩展方面做得很好,所以我建议你阅读他们的工程博客,因为它有大量的好内容——> http://www.facebook.com/notes.php?id=9445547199
I have been looking into better solutions than the denormalized table I mentioned above. Another way I have found of accomplishing this is to condense all the content that would be in a given activity stream into a single row. It could be stored in XML, JSON, or some serialized format that could be read by your application. The update process would be simple too. Upon activity, place the new activity into a queue (perhaps using Amazon SQS or something else) and then continually poll the queue for the next item. Grab that item, parse it, and place its contents in the appropriate feed object stored in the database.
这种方法的优点是,每当请求特定提要时,您只需要读取一个数据库表,而不是获取一系列表。此外,它允许您维护一个有限的活动列表,因为每当您更新列表时,您可能会弹出最古老的活动项。
希望这能有所帮助!:)
After implementing activity streams to enable social feeds, microblogging, and collaboration features in several applications, I realized that the base functionality is quite common and could be turned into an external service that you utilize via an API. If you are building the stream into a production application and do not have unique or deeply complex needs, utilizing a proven service may be the best way to go. I would definitely recommend this for production applications over rolling your own simple solution on top of a relational database.
我的公司collaboration (http://www.collabinate.com)就是从这种实现中发展出来的,我们在图形数据库上实现了一个可伸缩的高性能活动流引擎来实现它。实际上,我们使用了Graphity算法的变体(改编自@RenePickhardt的早期工作,他也在这里提供了答案)来构建引擎。
如果您希望自己托管引擎或需要特殊功能,其核心代码实际上是非商业用途的开源代码,因此欢迎您查看。
我在几个月前解决了这个问题,但我认为我的实现太基础了。
我创建了以下模型:
HISTORY_TYPE
ID - The id of the history type
NAME - The name (type of the history)
DESCRIPTION - A description
HISTORY_MESSAGES
ID
HISTORY_TYPE - A message of history belongs to a history type
MESSAGE - The message to print, I put variables to be replaced by the actual values
HISTORY_ACTIVITY
ID
MESSAGE_ID - The message ID to use
VALUES - The data to use
例子
MESSAGE_ID_1 => "User %{user} created a new entry"
ACTIVITY_ID_1 => MESSAGE_ID = 1, VALUES = {user: "Rodrigo"}
我昨天开始执行一个这样的系统,这就是我要做的…
我创建了一个带有属性Id、ActorId、TypeId、Date、ObjectId和附加细节键/值对哈希表的StreamEvent类。这在数据库中由一个StreamEvent表(Id, actid, TypeId, Date, ObjectId)和一个StreamEventDetails表(StreamEventId, DetailKey, DetailValue)表示。
ActorId、TypeId和ObjectId允许捕获一个Subject-Verb-Object事件(以及稍后查询)。每个操作都可能导致创建多个StreamEvent实例。
然后,我为StreamEvent的每种类型的事件创建了一个子类,例如LoginEvent, PictureCommentEvent。这些子类中的每一个都有更多上下文特定的属性,如PictureId, ThumbNail, CommenText等(事件所需的任何属性),这些属性实际上存储为hashtable/StreamEventDetail表中的键/值对。
当从数据库中提取这些事件时,我使用一个工厂方法(基于TypeId)来创建正确的StreamEvent类。
StreamEvent的每个子类都有一个Render(context As StreamContext)方法,该方法根据传递的StreamContext类将事件输出到屏幕。StreamContext类允许基于视图的上下文设置选项。以Facebook为例,主页上的信息流会列出参与每个行动的每个人的全名(以及他们个人资料的链接),而查看朋友的信息流,你只能看到他们的名字(但其他参与者的全名)。
我还没有实现一个聚合提要(Facebook家),但我想我会创建一个AggregateFeed表,其中有字段UserId, StreamEventId,这是基于某种“嗯,你可能会发现这个有趣的”算法。
任何意见都将非常感激。
// one entry per actual event
events {
id, timestamp, type, data
}
// one entry per event, per feed containing that event
events_feeds {
event_id, feed_id
}
创建事件时,决定它出现在哪个提要中,并将这些提要添加到events_feeds中。
要获取提要,请从events_feeds中选择,加入事件,按时间戳排序。
然后可以对该查询的结果进行过滤和聚合。
使用此模型,您可以在创建后更改事件属性,而不需要额外的工作。