它们各自的优点和缺点是什么?
据我所知,如果需要的话,任何一种都可以作为另一种的替代品,所以我是应该同时使用两种呢,还是应该坚持使用其中一种呢?
程序的风格会影响我的选择吗?我正在使用numpy做一些机器学习,所以确实有很多矩阵,但也有很多向量(数组)。
它们各自的优点和缺点是什么?
据我所知,如果需要的话,任何一种都可以作为另一种的替代品,所以我是应该同时使用两种呢,还是应该坚持使用其中一种呢?
程序的风格会影响我的选择吗?我正在使用numpy做一些机器学习,所以确实有很多矩阵,但也有很多向量(数组)。
当前回答
Numpy数组的矩阵运算:
我愿意不断更新这个答案 关于numpy数组的矩阵运算,如果一些用户有兴趣寻找关于矩阵和numpy的信息。
作为公认的答案,numpy-ref.pdf说:
类numpy。矩阵将在未来被删除。
现在需要做矩阵代数运算 使用Numpy数组。
a = np.array([[1,3],[-2,4]])
b = np.array([[3,-2],[5,6]])
矩阵乘法(中缀矩阵乘法)
a@b
array([[18, 16],
[14, 28]])
置:
ab = a@b
ab.T
array([[18, 14],
[16, 28]])
矩阵的逆:
np.linalg.inv(ab)
array([[ 0.1 , -0.05714286],
[-0.05 , 0.06428571]])
ab_i=np.linalg.inv(ab)
ab@ab_i # proof of inverse
array([[1., 0.],
[0., 1.]]) # identity matrix
矩阵的行列式。
np.linalg.det(ab)
279.9999999999999
求解线性方程组:
1. x + y = 3,
x + 2y = -8
b = np.array([3,-8])
a = np.array([[1,1], [1,2]])
x = np.linalg.solve(a,b)
x
array([ 14., -11.])
# Solution x=14, y=-11
特征值和特征向量:
a = np.array([[10,-18], [6,-11]])
np.linalg.eig(a)
(array([ 1., -2.]), array([[0.89442719, 0.83205029],
[0.4472136 , 0.5547002 ]])
其他回答
Numpy矩阵严格是2维的,而Numpy数组(ndarray)则是 n维。矩阵对象是ndarray的子类,所以它们继承了所有 ndarray的属性和方法。
numpy矩阵的主要优点是它们提供了一种方便的符号 对于矩阵乘法:如果a和b是矩阵,那么a*b就是它们的矩阵 产品。
import numpy as np
a = np.mat('4 3; 2 1')
b = np.mat('1 2; 3 4')
print(a)
# [[4 3]
# [2 1]]
print(b)
# [[1 2]
# [3 4]]
print(a*b)
# [[13 20]
# [ 5 8]]
另一方面,从Python 3.5开始,NumPy支持使用@操作符进行中子星矩阵乘法,因此您可以在Python >= 3.5中使用ndarray实现同样方便的矩阵乘法。
import numpy as np
a = np.array([[4, 3], [2, 1]])
b = np.array([[1, 2], [3, 4]])
print(a@b)
# [[13 20]
# [ 5 8]]
矩阵对象和ndarray都有。t来返回转置,但是矩阵 物体也有。h表示共轭转置,i表示逆。
相反,numpy数组始终遵守操作规则 按元素应用(除了新的@操作符)。因此,如果a和b是numpy数组,那么a*b就是数组 由元素相乘组成:
c = np.array([[4, 3], [2, 1]])
d = np.array([[1, 2], [3, 4]])
print(c*d)
# [[4 6]
# [6 4]]
要获得矩阵乘法的结果,可以使用np。dot(或Python中的@ >= 3.5,如上所示):
print(np.dot(c,d))
# [[13 20]
# [ 5 8]]
**操作符的行为也有所不同:
print(a**2)
# [[22 15]
# [10 7]]
print(c**2)
# [[16 9]
# [ 4 1]]
由于a是一个矩阵,a**2返回矩阵乘积a*a。 由于c是一个ndarray, c**2返回一个包含每个分量平方的ndarray element-wise。
矩阵对象和ndarray之间还有其他技术上的区别 (与np有关。拉威尔,项目选择和序列行为)。
numpy数组的主要优点是它们比 二维矩阵。当你想要一个三维数组时会发生什么?然后 你必须使用ndarray,而不是矩阵对象。因此,学习使用矩阵 对象是更多的工作——你必须学习矩阵对象操作,还有 ndarray操作。
编写混合矩阵和数组的程序会使您的生活变得困难 因为你必须跟踪你的变量是什么类型的对象,以免 乘法会返回你意想不到的结果。
相反,如果您只坚持使用ndarray,那么您可以做任何事情 矩阵对象可以做的,而且更多,除了略有不同 函数/符号。
如果你愿意放弃NumPy矩阵产品的视觉吸引力 (在Python >= 3.5中,ndarray几乎可以优雅地实现),那么我认为NumPy数组绝对是正确的选择。
PS.当然,你真的不必以牺牲另一个为代价来选择一个, 因为np。Asmatrix和np。Asarray允许您将一个转换为另一个(如 只要数组是二维的)。
这里简要介绍了NumPy数组与NumPy矩阵之间的区别。
使用矩阵的一个优点是通过文本而不是嵌套的方括号更容易实例化。
你可以用矩阵来做
np.matrix("1, 1+1j, 0; 0, 1j, 0; 0, 0, 1")
并直接获得所需的输出:
matrix([[1.+0.j, 1.+1.j, 0.+0.j],
[0.+0.j, 0.+1.j, 0.+0.j],
[0.+0.j, 0.+0.j, 1.+0.j]])
如果你使用数组,这是行不通的:
np.array("1, 1+1j, 0; 0, 1j, 0; 0, 0, 1")
输出:
array('1, 1+1j, 0; 0, 1j, 0; 0, 0, 1', dtype='<U29')
Numpy数组的矩阵运算:
我愿意不断更新这个答案 关于numpy数组的矩阵运算,如果一些用户有兴趣寻找关于矩阵和numpy的信息。
作为公认的答案,numpy-ref.pdf说:
类numpy。矩阵将在未来被删除。
现在需要做矩阵代数运算 使用Numpy数组。
a = np.array([[1,3],[-2,4]])
b = np.array([[3,-2],[5,6]])
矩阵乘法(中缀矩阵乘法)
a@b
array([[18, 16],
[14, 28]])
置:
ab = a@b
ab.T
array([[18, 14],
[16, 28]])
矩阵的逆:
np.linalg.inv(ab)
array([[ 0.1 , -0.05714286],
[-0.05 , 0.06428571]])
ab_i=np.linalg.inv(ab)
ab@ab_i # proof of inverse
array([[1., 0.],
[0., 1.]]) # identity matrix
矩阵的行列式。
np.linalg.det(ab)
279.9999999999999
求解线性方程组:
1. x + y = 3,
x + 2y = -8
b = np.array([3,-8])
a = np.array([[1,1], [1,2]])
x = np.linalg.solve(a,b)
x
array([ 14., -11.])
# Solution x=14, y=-11
特征值和特征向量:
a = np.array([[10,-18], [6,-11]])
np.linalg.eig(a)
(array([ 1., -2.]), array([[0.89442719, 0.83205029],
[0.4472136 , 0.5547002 ]])
只是在unutbu的列表中添加一个案例。
对我来说,numpy ndarray与numpy矩阵或像matlab这样的矩阵语言相比,最大的实际区别之一是在约简操作中不保留维数。矩阵总是二维的,而数组的均值,例如,有一个维度少。
例如降低矩阵或数组的行:
与矩阵
>>> m = np.mat([[1,2],[2,3]])
>>> m
matrix([[1, 2],
[2, 3]])
>>> mm = m.mean(1)
>>> mm
matrix([[ 1.5],
[ 2.5]])
>>> mm.shape
(2, 1)
>>> m - mm
matrix([[-0.5, 0.5],
[-0.5, 0.5]])
与数组
>>> a = np.array([[1,2],[2,3]])
>>> a
array([[1, 2],
[2, 3]])
>>> am = a.mean(1)
>>> am.shape
(2,)
>>> am
array([ 1.5, 2.5])
>>> a - am #wrong
array([[-0.5, -0.5],
[ 0.5, 0.5]])
>>> a - am[:, np.newaxis] #right
array([[-0.5, 0.5],
[-0.5, 0.5]])
我还认为混合使用数组和矩阵会带来很多“愉快的”调试时间。 然而,scipy。稀疏矩阵总是矩阵的运算符,比如乘法。
正如其他人所提到的,也许矩阵的主要优点是它为矩阵乘法提供了一个方便的符号。
然而,在Python 3.5中,最终有一个专用的中缀运算符用于矩阵乘法:@。
在最近的NumPy版本中,它可以与ndarray一起使用:
A = numpy.ones((1, 3))
B = numpy.ones((3, 3))
A @ B
所以现在,当你有疑问的时候,你应该坚持使用ndarray。