我有麻烦重新安排以下数据帧:
set.seed(45)
dat1 <- data.frame(
name = rep(c("firstName", "secondName"), each=4),
numbers = rep(1:4, 2),
value = rnorm(8)
)
dat1
name numbers value
1 firstName 1 0.3407997
2 firstName 2 -0.7033403
3 firstName 3 -0.3795377
4 firstName 4 -0.7460474
5 secondName 1 -0.8981073
6 secondName 2 -0.3347941
7 secondName 3 -0.5013782
8 secondName 4 -0.1745357
我想重塑它,以便每个唯一的“name”变量都是一个行名,“值”作为该行的观察值,“数字”作为冒号。就像这样:
name 1 2 3 4
1 firstName 0.3407997 -0.7033403 -0.3795377 -0.7460474
5 secondName -0.8981073 -0.3347941 -0.5013782 -0.1745357
我试过熔化和铸造,还有其他一些方法,但似乎都不行。
新的(2014年)tidyr包也简单地做到了这一点,gather()/spread()是melt/cast的术语。
编辑:现在,在2019年,tidyr v 1.0已经推出,并将spread和gather设置为弃用路径,更倾向于pivot_更宽和pivot_更长,您可以在这个答案中找到描述。如果你想简要了解一下传播/聚集的短暂生活,请继续阅读。
library(tidyr)
spread(dat1, key = numbers, value = value)
从github,
Tidyr是为了配合整洁的数据框架而设计的重塑重塑,并与magrittr和dplyr携手合作,为数据分析构建一个坚实的管道。
就像reshape2做得比重塑少一样,tidyr做得比重塑少。它是专门为整理数据而设计的,而不是像重塑2那样进行一般的重塑,也不是像重塑那样进行一般的聚合。特别是,内置方法只适用于数据帧,而tidyr不提供边距或聚合。
如果考虑性能,另一个选择是使用数据。表格对reshape2的melt和dcast函数的扩展
(参考:使用data.tables进行高效重塑)
library(data.table)
setDT(dat1)
dcast(dat1, name ~ numbers, value.var = "value")
# name 1 2 3 4
# 1: firstName 0.1836433 -0.8356286 1.5952808 0.3295078
# 2: secondName -0.8204684 0.4874291 0.7383247 0.5757814
至于数据。表v1.9.6可以对多个列进行强制转换
## add an extra column
dat1[, value2 := value * 2]
## cast multiple value columns
dcast(dat1, name ~ numbers, value.var = c("value", "value2"))
# name value_1 value_2 value_3 value_4 value2_1 value2_2 value2_3 value2_4
# 1: firstName 0.1836433 -0.8356286 1.5952808 0.3295078 0.3672866 -1.6712572 3.190562 0.6590155
# 2: secondName -0.8204684 0.4874291 0.7383247 0.5757814 -1.6409368 0.9748581 1.476649 1.1515627
其他两种选择:
基本包:
df <- unstack(dat1, form = value ~ numbers)
rownames(df) <- unique(dat1$name)
df
sqldf包:
library(sqldf)
sqldf('SELECT name,
MAX(CASE WHEN numbers = 1 THEN value ELSE NULL END) x1,
MAX(CASE WHEN numbers = 2 THEN value ELSE NULL END) x2,
MAX(CASE WHEN numbers = 3 THEN value ELSE NULL END) x3,
MAX(CASE WHEN numbers = 4 THEN value ELSE NULL END) x4
FROM dat1
GROUP BY name')
将三列数据框架重塑为矩阵(“长”到“宽”格式)。这个问题已经结束了,所以我在这里写了一个替代解。
我找到了另一种解决方案,可能对寻找将三列转换为矩阵的人有用。我指的是去耦(2.3.2)包。以下摘自他们的网站
生成一种表,其中行来自id_cols,列来自names_from,值来自values_from。
使用
pivot_wider_profile(
data,
id_cols,
names_from,
values_from,
values_fill = NA,
to_matrix = FALSE,
to_sparse = FALSE,
...
)
对于tidyr,有pivot_wider()和pivot_longer(),它们分别被广义为从long -> wide或wide -> long进行重塑。使用OP的数据:
单列长>宽
library(tidyr)
dat1 %>%
pivot_wider(names_from = numbers, values_from = value)
# # A tibble: 2 x 5
# name `1` `2` `3` `4`
# <fct> <dbl> <dbl> <dbl> <dbl>
# 1 firstName 0.341 -0.703 -0.380 -0.746
# 2 secondName -0.898 -0.335 -0.501 -0.175
多列长>宽
Pivot_wider()还能够执行更复杂的枢轴操作。例如,你可以同时对多个列进行主元操作:
# create another column for showing the functionality
dat2 <- dat1 %>%
dplyr::rename(valA = value) %>%
dplyr::mutate(valB = valA * 2)
dat2 %>%
pivot_wider(names_from = numbers, values_from = c(valA, valB))
# # A tibble: 2 × 9
# name valA_1 valA_2 valA_3 valA_4 valB_1 valB_2 valB_3 valB_4
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 firstName 0.341 -0.703 -0.380 -0.746 0.682 -1.41 -0.759 -1.49
# 2 secondName -0.898 -0.335 -0.501 -0.175 -1.80 -0.670 -1.00 -0.349
在文档中可以找到更多的功能。