我有麻烦重新安排以下数据帧:

set.seed(45)
dat1 <- data.frame(
    name = rep(c("firstName", "secondName"), each=4),
    numbers = rep(1:4, 2),
    value = rnorm(8)
    )

dat1
       name  numbers      value
1  firstName       1  0.3407997
2  firstName       2 -0.7033403
3  firstName       3 -0.3795377
4  firstName       4 -0.7460474
5 secondName       1 -0.8981073
6 secondName       2 -0.3347941
7 secondName       3 -0.5013782
8 secondName       4 -0.1745357

我想重塑它,以便每个唯一的“name”变量都是一个行名,“值”作为该行的观察值,“数字”作为冒号。就像这样:

     name          1          2          3         4
1  firstName  0.3407997 -0.7033403 -0.3795377 -0.7460474
5 secondName -0.8981073 -0.3347941 -0.5013782 -0.1745357

我试过熔化和铸造,还有其他一些方法,但似乎都不行。


当前回答

简单多了!

devtools::install_github("yikeshu0611/onetree") #install onetree package

library(onetree)
widedata=reshape_toWide(data = dat1,id = "name",j = "numbers",value.var.prefix = "value")
widedata

        name     value1     value2     value3     value4
   firstName  0.3407997 -0.7033403 -0.3795377 -0.7460474
  secondName -0.8981073 -0.3347941 -0.5013782 -0.1745357

如果你想从宽返回到长,只改变宽为长,不改变对象。

reshape_toLong(data = widedata,id = "name",j = "numbers",value.var.prefix = "value")

        name numbers      value
   firstName       1  0.3407997
  secondName       1 -0.8981073
   firstName       2 -0.7033403
  secondName       2 -0.3347941
   firstName       3 -0.3795377
  secondName       3 -0.5013782
   firstName       4 -0.7460474
  secondName       4 -0.1745357

其他回答

基本重塑功能工作得非常好:

df <- data.frame(
  year   = c(rep(2000, 12), rep(2001, 12)),
  month  = rep(1:12, 2),
  values = rnorm(24)
)
df_wide <- reshape(df, idvar="year", timevar="month", v.names="values", direction="wide", sep="_")
df_wide

在哪里

Idvar是分隔行的类列 Timevar是要宽转换的类列 V.names是包含数值的列 方向指定宽或长格式 可选的sep参数是输出data.frame中timevar类名和v.names之间的分隔符。

如果不存在idvar,在使用重塑()函数之前创建一个:

df$id   <- c(rep("year1", 12), rep("year2", 12))
df_wide <- reshape(df, idvar="id", timevar="month", v.names="values", direction="wide", sep="_")
df_wide

只需要记住idvar是必需的!timevar和v.names部分很简单。这个函数的输出比其他一些函数更可预测,因为所有内容都是显式定义的。

新的(2014年)tidyr包也简单地做到了这一点,gather()/spread()是melt/cast的术语。

编辑:现在,在2019年,tidyr v 1.0已经推出,并将spread和gather设置为弃用路径,更倾向于pivot_更宽和pivot_更长,您可以在这个答案中找到描述。如果你想简要了解一下传播/聚集的短暂生活,请继续阅读。

library(tidyr)
spread(dat1, key = numbers, value = value)

从github,

Tidyr是为了配合整洁的数据框架而设计的重塑重塑,并与magrittr和dplyr携手合作,为数据分析构建一个坚实的管道。 就像reshape2做得比重塑少一样,tidyr做得比重塑少。它是专门为整理数据而设计的,而不是像重塑2那样进行一般的重塑,也不是像重塑那样进行一般的聚合。特别是,内置方法只适用于数据帧,而tidyr不提供边距或聚合。

简单多了!

devtools::install_github("yikeshu0611/onetree") #install onetree package

library(onetree)
widedata=reshape_toWide(data = dat1,id = "name",j = "numbers",value.var.prefix = "value")
widedata

        name     value1     value2     value3     value4
   firstName  0.3407997 -0.7033403 -0.3795377 -0.7460474
  secondName -0.8981073 -0.3347941 -0.5013782 -0.1745357

如果你想从宽返回到长,只改变宽为长,不改变对象。

reshape_toLong(data = widedata,id = "name",j = "numbers",value.var.prefix = "value")

        name numbers      value
   firstName       1  0.3407997
  secondName       1 -0.8981073
   firstName       2 -0.7033403
  secondName       2 -0.3347941
   firstName       3 -0.3795377
  secondName       3 -0.5013782
   firstName       4 -0.7460474
  secondName       4 -0.1745357

使用基R聚合函数:

aggregate(value ~ name, dat1, I)

# name           value.1  value.2  value.3  value.4
#1 firstName      0.4145  -0.4747   0.0659   -0.5024
#2 secondName    -0.8259   0.1669  -0.8962    0.1681

如果考虑性能,另一个选择是使用数据。表格对reshape2的melt和dcast函数的扩展

(参考:使用data.tables进行高效重塑)

library(data.table)

setDT(dat1)
dcast(dat1, name ~ numbers, value.var = "value")

#          name          1          2         3         4
# 1:  firstName  0.1836433 -0.8356286 1.5952808 0.3295078
# 2: secondName -0.8204684  0.4874291 0.7383247 0.5757814

至于数据。表v1.9.6可以对多个列进行强制转换

## add an extra column
dat1[, value2 := value * 2]

## cast multiple value columns
dcast(dat1, name ~ numbers, value.var = c("value", "value2"))

#          name    value_1    value_2   value_3   value_4   value2_1   value2_2 value2_3  value2_4
# 1:  firstName  0.1836433 -0.8356286 1.5952808 0.3295078  0.3672866 -1.6712572 3.190562 0.6590155
# 2: secondName -0.8204684  0.4874291 0.7383247 0.5757814 -1.6409368  0.9748581 1.476649 1.1515627