我有这个DataFrame,只想要EPS列不是NaN的记录:

>>> df
                 STK_ID  EPS  cash
STK_ID RPT_Date                   
601166 20111231  601166  NaN   NaN
600036 20111231  600036  NaN    12
600016 20111231  600016  4.3   NaN
601009 20111231  601009  NaN   NaN
601939 20111231  601939  2.5   NaN
000001 20111231  000001  NaN   NaN

……。像df.drop(....)这样的东西来获得这个结果的数据框架:

                  STK_ID  EPS  cash
STK_ID RPT_Date                   
600016 20111231  600016  4.3   NaN
601939 20111231  601939  2.5   NaN

我怎么做呢?


当前回答

它可以添加在'&'可以用来添加额外的条件。

df = df[(df.EPS > 2.0) & (df.EPS <4.0)]

注意,在对语句求值时,pandas需要括号。

其他回答

下面的方法对我很有效。如果以上方法都不起作用,那就有帮助了:

df[df['colum_name'].str.len() >= 1]

其基本思想是,只有当长度强度大于1时才拾取记录。这在处理字符串数据时尤其有用

最好!

它可以添加在'&'可以用来添加额外的条件。

df = df[(df.EPS > 2.0) & (df.EPS <4.0)]

注意,在对语句求值时,pandas需要括号。

简单易行的方法

df.dropna(子集[’EPS’]、inplace = = True)

来源:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.dropna.html

这是另一种解决方案,它使用了np。Nan != np.nan:

In [149]: df.query("EPS == EPS")
Out[149]:
                 STK_ID  EPS  cash
STK_ID RPT_Date
600016 20111231  600016  4.3   NaN
601939 20111231  601939  2.5   NaN

你可以试试:

df['EPS'].dropna()