我在读CLRS的《算法导论》。在第二章中,作者提到了“循环不变量”。什么是循环不变量?
当前回答
循环不变量是在循环执行前后为真的断言。
其他回答
循环不变量属性是一个条件,适用于循环执行的每一步。For循环,while循环,等等)
这对于循环不变证明是必不可少的,如果在执行的每一步都保持循环不变属性,则可以证明算法正确执行。
对于一个正确的算法,循环不变量必须保持在:
初始化(开始)
维护(之后的每一步)
终止(当它完成时)
这被用来计算很多东西,但最好的例子是加权图遍历的贪婪算法。对于贪心算法产生最优解(穿过图的路径),它必须达到连接所有节点在最小权值路径可能。
因此,循环不变的性质是所选择的路径具有最小的权值。在开始时,我们没有添加任何边,所以这个属性为真(在这种情况下,它不是假的)。在每一步中,我们都遵循最小权值边(贪婪步),所以我们再次采用最小权值路径。最后,我们找到了最小加权路径,所以我们的性质也是成立的。
如果一个算法不这样做,我们可以证明它不是最优的。
《如何思考算法》的定义,Jeff Edmonds著
循环不变式是放置在循环和循环顶部的断言 每次计算返回到循环的顶部时,这必须成立。
不变的意思是永不改变
这里循环不变量的意思是“发生在循环中的变量的变化(增加或减少)并没有改变循环条件,即条件是满足的”,因此循环不变量的概念就产生了
之前的回答已经很好地定义了循环不变量。
以下是CLRS的作者如何使用循环不变量来证明插入排序的正确性。
插入排序算法(见书):
INSERTION-SORT(A)
for j ← 2 to length[A]
do key ← A[j]
// Insert A[j] into the sorted sequence A[1..j-1].
i ← j - 1
while i > 0 and A[i] > key
do A[i + 1] ← A[i]
i ← i - 1
A[i + 1] ← key
循环不变量在这种情况下: 子数组[1到j-1]始终被排序。
现在让我们检查一下,证明这个算法是正确的。
初始化:在第一次迭代j=2之前。所以子数组[1:1]就是要测试的数组。因为它只有一个元素,所以它是有序的。这样不变性就被满足了。
维护:这可以通过在每次迭代后检查不变量来轻松验证。在这种情况下,它被满足了。
终止:这是我们将证明算法正确性的步骤。
当循环结束时,j=n+1。循环不变量再次被满足。这意味着子数组[1到n]应该排序。
这就是我们想用算法做的。因此,我们的算法是正确的。
在线性搜索(根据书中给出的练习)中,我们需要在给定的数组中找到值V。
它很简单,从0 <= k < length开始扫描数组并比较每个元素。如果找到V,或者扫描到数组的长度,就终止循环。
根据我对上述问题的理解-
循环不变量(初始化): 在k - 1迭代中找不到V。第一次迭代,这是-1因此我们可以说V不在-1位置
保养: 在下一次迭代中,V不在k-1中成立
Terminatation: 如果V位于k个位置,或者k达到数组的长度,则终止循环。
推荐文章
- 有效的方法应用多个过滤器的熊猫数据框架或系列
- BASE术语解释
- 哪些是遗传算法/遗传规划解决方案的好例子?
- JavaBean和POJO之间的区别是什么?
- 如何在O(n)中找到长度为n的无序数组中的第k大元素?
- 一个用于膨胀/收缩(抵消,缓冲)多边形的算法
- 我如何使用Node.js Crypto创建HMAC-SHA1哈希?
- 如何用动态规划确定最长递增子序列?
- 在c++程序中以编程方式检测字节序
- 理解递归
- 段树、区间树、二叉索引树和范围树之间有什么区别?
- 给定一个数字,找出下一个与原始数字具有完全相同的数字集的更高的数字
- HSL到RGB的颜色转换
- 使用Java在原语数组中查找最大/最小值
- 好的Java图算法库?