我如何计算以下数组中的0和1的数量?

y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])

y.count(0)为:

numpy。Ndarray对象没有属性计数


当前回答

y (val)伯爵tolist()。

val为0或1

因为python列表有一个原生函数count,所以在使用该函数之前转换为list是一个简单的解决方案。

其他回答

筛选并使用len

使用len是另一种选择。

A = np.array([1,0,1,0,1,0,1])

假设我们想要0的出现次数。

A[A==0]  # Return the array where item is 0, array([0, 0, 0])

现在,用len把它包起来。

len(A[A==0])  # 3
len(A[A==1])  # 4
len(A[A==7])  # 0, because there isn't such item.

对于一般条目:

x = np.array([11, 2, 3, 5, 3, 2, 16, 10, 10, 3, 11, 4, 5, 16, 3, 11, 4])
n = {i:len([j for j in np.where(x==i)[0]]) for i in set(x)}
ix = {i:[j for j in np.where(x==i)[0]] for i in set(x)}

将输出一个计数:

{2: 2, 3: 4, 4: 2, 5: 2, 10: 2, 11: 3, 16: 2}

和指标:

{2: [1, 5],
3: [2, 4, 9, 14],
4: [11, 16],
5: [3, 12],
10: [7, 8],
11: [0, 10, 15],
16: [6, 13]}

这里我有一些东西,通过它你可以计算特定数字的出现次数: 根据你的代码

count_of_zero=list(y[y==0]).count(0) 

print(count_of_zero)

// according to the match there will be boolean values and according
// to True value the number 0 will be return.
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])

如果你知道它们是0和1

np.sum(y)

给出1的个数。Np.sum (1-y)给出0。

一般来说,如果你想计算0而不是0(但可能是2或3):

np.count_nonzero(y)

给出非零的个数。

但是如果您需要更复杂的东西,我不认为numpy将提供一个很好的计数选项。在这种情况下,转到集合:

import collections
collections.Counter(y)
> Counter({0: 8, 1: 4})

这就像字典一样

collections.Counter(y)[0]
> 8

你有一个只有1和0的特殊数组。一个技巧就是使用

np.mean(x)

也就是数组中1的百分比。另外,使用

np.sum(x)
np.sum(1-x)

会给出数组中1和0的绝对值。