在c#中,多维数组double[,]和数组的数组double[][]有什么区别?

如果有区别,每一种的最佳用途是什么?


当前回答

数组的数组(锯齿数组)比多维数组更快,可以更有效地使用。多维数组有更好的语法。

如果你使用交错数组和多维数组写一些简单的代码,然后用IL反汇编器检查编译后的程序集,你会发现从交错数组(或一维数组)中存储和检索是简单的IL指令,而多维数组的相同操作是方法调用,总是比较慢。

考虑以下方法:

static void SetElementAt(int[][] array, int i, int j, int value)
{
    array[i][j] = value;
}

static void SetElementAt(int[,] array, int i, int j, int value)
{
    array[i, j] = value;
}

他们的IL将如下:

.method private hidebysig static void  SetElementAt(int32[][] 'array',
                                                    int32 i,
                                                    int32 j,
                                                    int32 'value') cil managed
{
  // Code size       7 (0x7)
  .maxstack  8
  IL_0000:  ldarg.0
  IL_0001:  ldarg.1
  IL_0002:  ldelem.ref
  IL_0003:  ldarg.2
  IL_0004:  ldarg.3
  IL_0005:  stelem.i4
  IL_0006:  ret
} // end of method Program::SetElementAt

.method private hidebysig static void  SetElementAt(int32[0...,0...] 'array',
                                                    int32 i,
                                                    int32 j,
                                                    int32 'value') cil managed
{
  // Code size       10 (0xa)
  .maxstack  8
  IL_0000:  ldarg.0
  IL_0001:  ldarg.1
  IL_0002:  ldarg.2
  IL_0003:  ldarg.3
  IL_0004:  call       instance void int32[0...,0...]::Set(int32,
                                                           int32,
                                                           int32)
  IL_0009:  ret
} // end of method Program::SetElementAt

当使用锯齿状数组时,可以轻松地执行行交换和行大小调整等操作。也许在某些情况下使用多维数组会更安全,但即使Microsoft FxCop也告诉我们,当您使用锯齿数组来分析您的项目时,应该使用锯齿数组而不是多维数组。

其他回答

使用基于John Leidegren的测试,我使用。net 4.7.2对结果进行了基准测试,这是与我的目的相关的版本,我认为我可以分享。我最初是从dotnet核心GitHub存储库中的这条注释开始的。

随着数组大小的变化,性能似乎有很大变化,至少在我的设置中是这样,1个处理器xeon, 4physical 8logical。

W =初始化一个数组,并将int I * j放入其中。 Wr = do w,然后在另一个循环中设置int x为[i,j]

随着数组大小的增长,多维似乎表现得更好。

Size rw Method Mean Error StdDev Gen 0/1k Op Gen 1/1k Op Gen 2/1k Op Allocated Memory/Op
1800*500 w Jagged 2.445 ms 0.0959 ms 0.1405 ms 578.1250 281.2500 85.9375 3.46 MB
1800*500 w Multi 3.079 ms 0.2419 ms 0.3621 ms 269.5313 269.5313 269.5313 3.43 MB
2000*4000 w Jagged 50.29 ms 3.262 ms 4.882 ms 5937.5000 3375.0000 937.5000 30.62 MB
2000*4000 w Multi 26.34 ms 1.797 ms 2.690 ms 218.7500 218.7500 218.7500 30.52 MB
2000*4000 wr Jagged 55.30 ms 3.066 ms 4.589 ms 5937.5000 3375.0000 937.5000 30.62 MB
2000*4000 wr Multi 32.23 ms 2.798 ms 4.187 ms 285.7143 285.7143 285.7143 30.52 MB
1000*2000 wr Jagged 11.18 ms 0.5397 ms 0.8078 ms 1437.5000 578.1250 234.3750 7.69 MB
1000*2000 wr Multi 6.622 ms 0.3238 ms 0.4847 ms 210.9375 210.9375 210.9375 7.63 MB

更新:最后两个测试用双[,]代替int[,]。考虑到误差,这种差异显得很显著。对于int,锯齿与md的平均比率在1.53x和1.86x之间,对于双精度,它是1.88x和2.42x。

Size rw Method Mean Error StdDev Gen 0/1k Op Gen 1/1k Op Gen 2/1k Op Allocated Memory/Op
1000*2000 wr Jagged 26.83 ms 1.221 ms 1.790 ms 3062.5000 1531.2500 531.2500 15.31 MB
1000*2000 wr Multi 12.61 ms 1.018 ms 1.524 ms 156.2500 156.2500 156.2500 15.26 MB

数组的数组(锯齿数组)比多维数组更快,可以更有效地使用。多维数组有更好的语法。

如果你使用交错数组和多维数组写一些简单的代码,然后用IL反汇编器检查编译后的程序集,你会发现从交错数组(或一维数组)中存储和检索是简单的IL指令,而多维数组的相同操作是方法调用,总是比较慢。

考虑以下方法:

static void SetElementAt(int[][] array, int i, int j, int value)
{
    array[i][j] = value;
}

static void SetElementAt(int[,] array, int i, int j, int value)
{
    array[i, j] = value;
}

他们的IL将如下:

.method private hidebysig static void  SetElementAt(int32[][] 'array',
                                                    int32 i,
                                                    int32 j,
                                                    int32 'value') cil managed
{
  // Code size       7 (0x7)
  .maxstack  8
  IL_0000:  ldarg.0
  IL_0001:  ldarg.1
  IL_0002:  ldelem.ref
  IL_0003:  ldarg.2
  IL_0004:  ldarg.3
  IL_0005:  stelem.i4
  IL_0006:  ret
} // end of method Program::SetElementAt

.method private hidebysig static void  SetElementAt(int32[0...,0...] 'array',
                                                    int32 i,
                                                    int32 j,
                                                    int32 'value') cil managed
{
  // Code size       10 (0xa)
  .maxstack  8
  IL_0000:  ldarg.0
  IL_0001:  ldarg.1
  IL_0002:  ldarg.2
  IL_0003:  ldarg.3
  IL_0004:  call       instance void int32[0...,0...]::Set(int32,
                                                           int32,
                                                           int32)
  IL_0009:  ret
} // end of method Program::SetElementAt

当使用锯齿状数组时,可以轻松地执行行交换和行大小调整等操作。也许在某些情况下使用多维数组会更安全,但即使Microsoft FxCop也告诉我们,当您使用锯齿数组来分析您的项目时,应该使用锯齿数组而不是多维数组。

多维数组创建了一个很好的线性内存布局,而锯齿数组意味着几个额外的间接层次。

在一个jagged数组中查找值jagged[3][6] var jagged = new int[10][5]的工作方式如下:查找索引为3的元素(这是一个数组),并查找该数组中索引为6的元素(这是一个值)。对于本例中的每个维度,都需要进行额外的查找(这是一种开销很大的内存访问模式)。

多维数组在内存中线性排列,实际值通过将索引相乘得到。然而,给定数组var mult = new int[10,30],该多维数组的Length属性将返回元素的总数,即10 * 30 = 300。

锯齿数组的Rank属性总是1,但多维数组可以有任何Rank。任何数组的GetLength方法都可以用于获取每个维度的长度。对于本例中的多维数组,multi . getlength(1)返回30。

索引多维数组更快。例如,给定这个例子中的多维数组mult[1,7] = 30 * 1 + 7 = 37,获取索引为37的元素。这是一种更好的内存访问模式,因为只涉及一个内存位置,即数组的基址。

多维数组因此分配一个连续的内存块,而锯齿状数组不一定是正方形的,例如jagged[1]。长度不一定等于锯齿状的[2]。长度,这对任何多维数组都成立。

性能

在性能方面,多维数组应该更快。快了很多,但由于一个非常糟糕的CLR实现,它们没有。

 23.084  16.634  15.215  15.489  14.407  13.691  14.695  14.398  14.551  14.252 
 25.782  27.484  25.711  20.844  19.607  20.349  25.861  26.214  19.677  20.171 
  5.050   5.085   6.412   5.225   5.100   5.751   6.650   5.222   6.770   5.305 

第一行是锯齿数组的计时,第二行是多维数组第三行,应该是这样的。该程序如下所示,仅供参考,这是测试运行mono。(窗口时间有很大的不同,主要是由于CLR实现的变化)。

在窗口上,锯齿数组的计时非常优越,与我自己对多维数组查找应该是什么样子的解释大致相同,请参阅“Single()”。不幸的是,windows的jit编译器真的很愚蠢,这使得这些性能讨论很困难,有太多的不一致。

这些是我在windows上得到的时间,这里也是一样,第一行是锯齿数组,第二行是多维的,第三行是我自己的多维实现,注意这在windows上比mono慢多了。

  8.438   2.004   8.439   4.362   4.936   4.533   4.751   4.776   4.635   5.864
  7.414  13.196  11.940  11.832  11.675  11.811  11.812  12.964  11.885  11.751
 11.355  10.788  10.527  10.541  10.745  10.723  10.651  10.930  10.639  10.595

源代码:

using System;
using System.Diagnostics;
static class ArrayPref
{
    const string Format = "{0,7:0.000} ";
    static void Main()
    {
        Jagged();
        Multi();
        Single();
    }

    static void Jagged()
    {
        const int dim = 100;
        for(var passes = 0; passes < 10; passes++)
        {
            var timer = new Stopwatch();
            timer.Start();
            var jagged = new int[dim][][];
            for(var i = 0; i < dim; i++)
            {
                jagged[i] = new int[dim][];
                for(var j = 0; j < dim; j++)
                {
                    jagged[i][j] = new int[dim];
                    for(var k = 0; k < dim; k++)
                    {
                        jagged[i][j][k] = i * j * k;
                    }
                }
            }
            timer.Stop();
            Console.Write(Format,
                (double)timer.ElapsedTicks/TimeSpan.TicksPerMillisecond);
        }
        Console.WriteLine();
    }

    static void Multi()
    {
        const int dim = 100;
        for(var passes = 0; passes < 10; passes++)
        {
            var timer = new Stopwatch();
            timer.Start();
            var multi = new int[dim,dim,dim];
            for(var i = 0; i < dim; i++)
            {
                for(var j = 0; j < dim; j++)
                {
                    for(var k = 0; k < dim; k++)
                    {
                        multi[i,j,k] = i * j * k;
                    }
                }
            }
            timer.Stop();
            Console.Write(Format,
                (double)timer.ElapsedTicks/TimeSpan.TicksPerMillisecond);
        }
        Console.WriteLine();
    }

    static void Single()
    {
        const int dim = 100;
        for(var passes = 0; passes < 10; passes++)
        {
            var timer = new Stopwatch();
            timer.Start();
            var single = new int[dim*dim*dim];
            for(var i = 0; i < dim; i++)
            {
                for(var j = 0; j < dim; j++)
                {
                    for(var k = 0; k < dim; k++)
                    {
                        single[i*dim*dim+j*dim+k] = i * j * k;
                    }
                }
            }
            timer.Stop();
            Console.Write(Format,
                (double)timer.ElapsedTicks/TimeSpan.TicksPerMillisecond);
        }
        Console.WriteLine();
    }
}

更新。net 6:

随着. net 6的发布,我决定是时候重新讨论这个话题了。我重写了new . net的测试代码,并按照每个部分至少运行一秒钟的要求运行它。基准测试是在AMD Ryzen 5600x上完成的。

Results? It's complicated. It seems that Single array is the most performant for smaller and large arrays (< ~25x25x25 & > ~200x200x200) and Jagged arrays being fastest in between. Unfortunately it seems from my testing that multi-dimensional are by far the slowest option. At best performing twice as slow as the fastest option. But! It depends on what you need the arrays for because jagged arrays can take much longer to initialize on 50^3 cube the initialization was roughly 3 times longer than single dimensional. Multi-dimensional was only a little bit slower than single dimensional.

结论?如果您需要快速的代码,请自己在将要运行它的机器上进行基准测试。CPU架构可以完成各个方法的相对性能变化。

数字!

Method name         Ticks/Iteration     Scaled to the best
Array size 1x1x1 (10,000,000 iterations):
Jagged:             0.15                4.28
Single:             0.035               1
Multi-dimensional:  0.77                22

Array size 10x10x10 (25,000 iterations):
Jagged:             15                  1.67
Single:             9                   1
Multi-dimensional:  56                  6.2

Array size 25x25x25 (25,000 iterations):
Jagged:             157                 1.3
Single:             120                 1
Multi-dimensional:  667                 5.56

Array size 50x50x50 (10,000 iterations):
Jagged:             1,140               1
Single:             2,440               2.14
Multi-dimensional:  5,210               4.57

Array size 100x100x100 (10,000 iterations):
Jagged:             9,800               1
Single:             19,800              2
Multi-dimensional:  41,700              4.25

Array size 200x200x200 (1,000 iterations):
Jagged:             161,622             1
Single:             175,507             1.086
Multi-dimensional:  351,275             2.17

Array size 500x500x500 (100 iterations):
Jagged:             4,057.413           1.5
Single:             2,709,301           1
Multi-dimensional:  5,359,393           1.98

不相信我?自己运行并验证。

注意:常量大小似乎给锯齿状数组一个边缘,但并不足以改变我的基准测试中的顺序。我在一些实例中测量到,当使用用户输入的大小时,锯齿状数组的性能下降了7%,对于单个数组没有差异,对于多维数组的性能下降非常小(~1%或更少)。它在中间最为突出,锯齿状阵列占据主导地位。

    using System.Diagnostics;

const string Format = "{0,7:0.000} ";
const int TotalPasses = 25000;
const int Size = 50;
Stopwatch timer = new();

var functionList = new List<Action> { Jagged, Single, SingleStandard, Multi };

Console.WriteLine("{0,5}{1,20}{2,20}{3,20}{4,20}", "Run", "Ticks", "ms", "Ticks/Instance", "ms/Instance");

foreach (var item in functionList)
{
    var warmup = Test(item);
    var run = Test(item);

    Console.WriteLine($"{item.Method.Name}:");
    PrintResult("warmup", warmup);
    PrintResult("run", run);
    Console.WriteLine();
}

static void PrintResult(string name, long ticks)
{
    Console.WriteLine("{0,10}{1,20}{2,20}{3,20}{4,20}", name, ticks, string.Format(Format, (decimal)ticks / TimeSpan.TicksPerMillisecond), (decimal)ticks / TotalPasses, (decimal)ticks / TotalPasses / TimeSpan.TicksPerMillisecond);
}

long Test(Action func)
{
    timer.Restart();
    func();
    timer.Stop();
    return timer.ElapsedTicks;
}

static void Jagged()
{
    for (var passes = 0; passes < TotalPasses; passes++)
    {
        var jagged = new int[Size][][];
        for (var i = 0; i < Size; i++)
        {
            jagged[i] = new int[Size][];
            for (var j = 0; j < Size; j++)
            {
                jagged[i][j] = new int[Size];
                for (var k = 0; k < Size; k++)
                {
                    jagged[i][j][k] = i * j * k;
                }
            }
        }
    }
}

static void Multi()
{
    for (var passes = 0; passes < TotalPasses; passes++)
    {
        var multi = new int[Size, Size, Size];
        for (var i = 0; i < Size; i++)
        {
            for (var j = 0; j < Size; j++)
            {
                for (var k = 0; k < Size; k++)
                {
                    multi[i, j, k] = i * j * k;
                }
            }
        }
    }
}

static void Single()
{
    for (var passes = 0; passes < TotalPasses; passes++)
    {
        var single = new int[Size * Size * Size];
        for (var i = 0; i < Size; i++)
        {
            int iOffset = i * Size * Size;
            for (var j = 0; j < Size; j++)
            {
                var jOffset = iOffset + j * Size;
                for (var k = 0; k < Size; k++)
                {
                    single[jOffset + k] = i * j * k;
                }
            }
        }
    }
}

static void SingleStandard()
{
    for (var passes = 0; passes < TotalPasses; passes++)
    {
        var single = new int[Size * Size * Size];
        for (var i = 0; i < Size; i++)
        {
            for (var j = 0; j < Size; j++)
            {
                for (var k = 0; k < Size; k++)
                {
                    single[i * Size * Size + j * Size + k] = i * j * k;
                }
            }
        }
    }
}

经验教训:总是在基准测试中包含CPU,因为它会有所不同。这次是吗?我不知道,但我怀疑是。


最初的回答:

我想更新一下,因为在。net Core中多维数组比锯齿数组更快。我运行了John Leidegren的测试,这些是。net Core 2.0预览版2的结果。我增加了维度值,使任何来自后台应用程序的可能影响变得不那么明显。

Debug (code optimalization disabled)
Running jagged 
187.232 200.585 219.927 227.765 225.334 222.745 224.036 222.396 219.912 222.737 

Running multi-dimensional  
130.732 151.398 131.763 129.740 129.572 159.948 145.464 131.930 133.117 129.342 

Running single-dimensional  
 91.153 145.657 111.974  96.436 100.015  97.640  94.581 139.658 108.326  92.931 


Release (code optimalization enabled)
Running jagged 
108.503 95.409 128.187 121.877 119.295 118.201 102.321 116.393 125.499 116.459 

Running multi-dimensional 
 62.292  60.627  60.611  60.883  61.167  60.923  62.083  60.932  61.444  62.974 

Running single-dimensional 
 34.974  33.901  34.088  34.659  34.064  34.735  34.919  34.694  35.006  34.796 

我调查了拆解,这是我的发现

[i][j][k] = i * j * k;需要执行34条指令

Multi [i, j, k] = i * j * k;需要执行11条指令

单个[i * dim * dim + j * dim + k] = i * j * k;需要执行23条指令

我无法确定为什么一维数组仍然比多维数组快,但我猜这与CPU上的一些优化有关

前言:本评论旨在解决okutane提供的关于锯齿数组和多维数组之间性能差异的答案。

一种类型因为方法调用而比另一种类型慢的断言是不正确的。其中一种比另一种慢,因为它的边界检查算法更复杂。您可以通过查看编译后的程序集而不是IL轻松验证这一点。例如,在我的4.5安装中,访问存储在ecx指向的二维数组中的元素(通过edx中的指针),索引存储在eax和edx中,如下所示:

sub eax,[ecx+10]
cmp eax,[ecx+08]
jae oops //jump to throw out of bounds exception
sub edx,[ecx+14]
cmp edx,[ecx+0C]
jae oops //jump to throw out of bounds exception
imul eax,[ecx+0C]
add eax,edx
lea edx,[ecx+eax*4+18]

Here, you can see that there's no overhead from method calls. The bounds checking is just very convoluted thanks to the possibility of non-zero indexes, which is a functionality not on offer with jagged arrays. If we remove the sub, cmp, and jmps for the non-zero cases, the code pretty much resolves to (x*y_max+y)*sizeof(ptr)+sizeof(array_header). This calculation is about as fast (one multiply could be replaced by a shift, since that's the whole reason we choose bytes to be sized as powers of two bits) as anything else for random access to an element.

Another complication is that there are plenty of cases where a modern compiler will optimize away the nested bounds-checking for element access while iterating over a single-dimension array. The result is code that basically just advances an index pointer over the contiguous memory of the array. Naive iteration over multi-dimensional arrays generally involves an extra layer of nested logic, so a compiler is less likely to optimize the operation. So, even though the bounds-checking overhead of accessing a single element amortizes out to constant runtime with respect to array dimensions and sizes, a simple test-case to measure the difference may take many times longer to execute.