了解汇编程序的原因之一是,有时可以使用汇编程序来编写比用高级语言(特别是C语言)编写的代码性能更好的代码。然而,我也听人说过很多次,尽管这并非完全错误,但实际上可以使用汇编程序来生成性能更好的代码的情况极其罕见,并且需要汇编方面的专业知识和经验。

这个问题甚至没有涉及到这样一个事实,即汇编程序指令将是特定于机器的、不可移植的,或者汇编程序的任何其他方面。当然,除了这一点之外,了解汇编还有很多很好的理由,但这是一个需要示例和数据的具体问题,而不是关于汇编程序与高级语言的扩展论述。

谁能提供一些具体的例子,说明使用现代编译器汇编代码比编写良好的C代码更快,并且您能否用分析证据支持这一说法?我相信这些案例确实存在,但我真的很想知道这些案例到底有多深奥,因为这似乎是一个有争议的问题。


当前回答

几乎任何时候编译器看到浮点代码,如果你使用的是旧的糟糕的编译器,手写的版本会更快。(2019年更新:对于现代编译器来说,这并不普遍。特别是在编译x87以外的东西时;编译器更容易使用SSE2或AVX进行标量数学运算,或任何具有平面FP寄存器集的非x86,不像x87的寄存器堆栈。)

主要原因是编译器不能执行任何健壮的优化。关于这个主题的讨论,请参阅来自MSDN的这篇文章。下面是一个例子,其中汇编版本的速度是C版本的两倍(用VS2K5编译):

#include "stdafx.h"
#include <windows.h>

float KahanSum(const float *data, int n)
{
   float sum = 0.0f, C = 0.0f, Y, T;

   for (int i = 0 ; i < n ; ++i) {
      Y = *data++ - C;
      T = sum + Y;
      C = T - sum - Y;
      sum = T;
   }

   return sum;
}

float AsmSum(const float *data, int n)
{
  float result = 0.0f;

  _asm
  {
    mov esi,data
    mov ecx,n
    fldz
    fldz
l1:
    fsubr [esi]
    add esi,4
    fld st(0)
    fadd st(0),st(2)
    fld st(0)
    fsub st(0),st(3)
    fsub st(0),st(2)
    fstp st(2)
    fstp st(2)
    loop l1
    fstp result
    fstp result
  }

  return result;
}

int main (int, char **)
{
  int count = 1000000;

  float *source = new float [count];

  for (int i = 0 ; i < count ; ++i) {
    source [i] = static_cast <float> (rand ()) / static_cast <float> (RAND_MAX);
  }

  LARGE_INTEGER start, mid, end;

  float sum1 = 0.0f, sum2 = 0.0f;

  QueryPerformanceCounter (&start);

  sum1 = KahanSum (source, count);

  QueryPerformanceCounter (&mid);

  sum2 = AsmSum (source, count);

  QueryPerformanceCounter (&end);

  cout << "  C code: " << sum1 << " in " << (mid.QuadPart - start.QuadPart) << endl;
  cout << "asm code: " << sum2 << " in " << (end.QuadPart - mid.QuadPart) << endl;

  return 0;
}

和一些数字从我的PC运行默认版本*:

  C code: 500137 in 103884668
asm code: 500137 in 52129147

出于兴趣,我用dec/jnz交换了循环,它对计时没有影响——有时更快,有时更慢。我想内存有限的方面使其他优化相形见绌。(编者注:更可能的情况是,FP延迟瓶颈足以隐藏循环的额外成本。对奇数/偶数元素并行进行两个Kahan求和,并在最后添加它们,可能会加快2倍的速度。)

哎呀,我正在运行一个稍微不同的代码版本,它输出的数字是错误的(即C更快!)修正并更新了结果。

其他回答

在我的工作中,有三个原因让我了解和使用组装。按重要性排序:

Debugging - I often get library code that has bugs or incomplete documentation. I figure out what it's doing by stepping in at the assembly level. I have to do this about once a week. I also use it as a tool to debug problems in which my eyes don't spot the idiomatic error in C/C++/C#. Looking at the assembly gets past that. Optimizing - the compiler does fairly well in optimizing, but I play in a different ballpark than most. I write image processing code that usually starts with code that looks like this: for (int y=0; y < imageHeight; y++) { for (int x=0; x < imageWidth; x++) { // do something } } the "do something part" typically happens on the order of several million times (ie, between 3 and 30). By scraping cycles in that "do something" phase, the performance gains are hugely magnified. I don't usually start there - I usually start by writing the code to work first, then do my best to refactor the C to be naturally better (better algorithm, less load in the loop etc). I usually need to read assembly to see what's going on and rarely need to write it. I do this maybe every two or three months. doing something the language won't let me. These include - getting the processor architecture and specific processor features, accessing flags not in the CPU (man, I really wish C gave you access to the carry flag), etc. I do this maybe once a year or two years.

我曾经和一个人一起工作过,他说“如果编译器笨到不能弄清楚你要做什么,并且不能优化它,那么你的编译器就坏了,是时候换一个新的了”。我确信在某些情况下汇编程序会打败你的C代码,但是如果你发现自己经常使用汇编程序来“赢得”编译器,那么你的编译器就完蛋了。

对于编写试图强制查询计划器执行操作的“优化”SQL也是如此。如果您发现自己重新安排查询以让计划器执行您想要的操作,那么您的查询计划器就完蛋了——请更换一个新的计划器。

在Amiga上,CPU和图形/音频芯片会为了访问特定区域的RAM(具体来说是前2MB的RAM)而争斗。因此,当你只有2MB RAM(或更少)时,显示复杂的图形加上播放声音会杀死CPU的性能。

在汇编程序中,你可以巧妙地交错你的代码,使CPU只在图形/音频芯片内部繁忙时(即当总线空闲时)才尝试访问RAM。因此,通过重新排序指令,巧妙地使用CPU缓存,总线定时,你可以实现一些使用任何高级语言都不可能实现的效果,因为你必须为每个命令定时,甚至在这里或那里插入nop,以使不同的芯片不受彼此的雷达影响。

这也是为什么CPU的NOP (No Operation -什么都不做)指令实际上可以让你的整个应用程序运行得更快的另一个原因。

当然,这种技术取决于特定的硬件设置。这就是为什么许多Amiga游戏无法适应更快的cpu的主要原因:指令的计时错误。

以下是我个人经历中的几个例子:

Access to instructions that are not accessible from C. For instance, many architectures (like x86-64, IA-64, DEC Alpha, and 64-bit MIPS or PowerPC) support a 64 bit by 64 bit multiplication producing a 128 bit result. GCC recently added an extension providing access to such instructions, but before that assembly was required. And access to this instruction can make a huge difference on 64-bit CPUs when implementing something like RSA - sometimes as much as a factor of 4 improvement in performance. Access to CPU-specific flags. The one that has bitten me a lot is the carry flag; when doing a multiple-precision addition, if you don't have access to the CPU carry bit one must instead compare the result to see if it overflowed, which takes 3-5 more instructions per limb; and worse, which are quite serial in terms of data accesses, which kills performance on modern superscalar processors. When processing thousands of such integers in a row, being able to use addc is a huge win (there are superscalar issues with contention on the carry bit as well, but modern CPUs deal pretty well with it). SIMD. Even autovectorizing compilers can only do relatively simple cases, so if you want good SIMD performance it's unfortunately often necessary to write the code directly. Of course you can use intrinsics instead of assembly but once you're at the intrinsics level you're basically writing assembly anyway, just using the compiler as a register allocator and (nominally) instruction scheduler. (I tend to use intrinsics for SIMD simply because the compiler can generate the function prologues and whatnot for me so I can use the same code on Linux, OS X, and Windows without having to deal with ABI issues like function calling conventions, but other than that the SSE intrinsics really aren't very nice - the Altivec ones seem better though I don't have much experience with them). As examples of things a (current day) vectorizing compiler can't figure out, read about bitslicing AES or SIMD error correction - one could imagine a compiler that could analyze algorithms and generate such code, but it feels to me like such a smart compiler is at least 30 years away from existing (at best).

On the other hand, multicore machines and distributed systems have shifted many of the biggest performance wins in the other direction - get an extra 20% speedup writing your inner loops in assembly, or 300% by running them across multiple cores, or 10000% by running them across a cluster of machines. And of course high level optimizations (things like futures, memoization, etc) are often much easier to do in a higher level language like ML or Scala than C or asm, and often can provide a much bigger performance win. So, as always, there are tradeoffs to be made.

简短的回答吗?有时。

从技术上讲,每一个抽象都有成本,而编程语言是CPU如何工作的抽象。然而C非常接近。几年前,我记得当我登录UNIX帐户并收到以下财富信息时(当时这种东西很流行),我笑出声来:

C程序设计语言——A 语言结合了 汇编语言的灵活性 汇编语言的强大。

这很有趣,因为这是真的:C就像可移植的汇编语言。

值得注意的是,汇编语言无论如何编写都可以运行。然而,在C语言和它生成的汇编语言之间有一个编译器,这是非常重要的,因为你的C代码有多快与你的编译器有多好有很大关系。

当gcc出现时,它如此受欢迎的原因之一是它通常比许多商业UNIX版本附带的C编译器要好得多。它不仅是ANSI C(没有任何K&R C的垃圾),更健壮,通常能产生更好(更快)的代码。不是总是,而是经常。

我告诉你这一切是因为没有关于C和汇编器速度的统一规则,因为C没有客观的标准。

同样地,汇编程序也会根据你正在运行的处理器、你的系统规格、你正在使用的指令集等而有很大的不同。历史上有两个CPU体系结构家族:CISC和RISC。CISC中最大的玩家过去是,现在仍然是Intel x86架构(和指令集)。RISC主宰了UNIX世界(MIPS6000、Alpha、Sparc等等)。CISC赢得了民心之战。

不管怎样,当我还是一个年轻的开发人员时,流行的观点是,手写的x86通常比C快得多,因为架构的工作方式,它的复杂性受益于人类的操作。另一方面,RISC似乎是为编译器设计的,所以没有人(我知道)写Sparc汇编器。我相信这样的人确实存在,但毫无疑问,他们现在都疯了,被送进了精神病院。

指令集是一个重要的点,即使在同一家族的处理器。某些英特尔处理器具有SSE到SSE4等扩展。AMD有他们自己的SIMD指令。像C这样的编程语言的好处是,人们可以编写他们的库,以便对您运行的任何处理器进行优化。这在汇编程序中是一项艰苦的工作。

你仍然可以在汇编程序中做一些编译器无法做的优化,一个编写良好的汇编程序算法将会和它的C等效程序一样快或更快。更大的问题是:这样做值得吗?

Ultimately though assembler was a product of its time and was more popular at a time when CPU cycles were expensive. Nowadays a CPU that costs $5-10 to manufacture (Intel Atom) can do pretty much anything anyone could want. The only real reason to write assembler these days is for low level things like some parts of an operating system (even so the vast majority of the Linux kernel is written in C), device drivers, possibly embedded devices (although C tends to dominate there too) and so on. Or just for kicks (which is somewhat masochistic).