我理解乐观锁定和悲观锁定之间的区别。现在,谁能给我解释一下,我一般什么时候使用这两种方法?
这个问题的答案是否会随着我是否使用存储过程来执行查询而变化?
但是为了检查一下,乐观的意思是“阅读时不要锁定表”,而悲观的意思是“阅读时锁定表”。
我理解乐观锁定和悲观锁定之间的区别。现在,谁能给我解释一下,我一般什么时候使用这两种方法?
这个问题的答案是否会随着我是否使用存储过程来执行查询而变化?
但是为了检查一下,乐观的意思是“阅读时不要锁定表”,而悲观的意思是“阅读时锁定表”。
当前回答
乐观锁定和悲观锁定是数据库中锁定数据的两种模型。
乐观锁定:仅在向数据库提交更改时才锁定记录。
悲观锁定:在编辑记录时锁定记录。
注意:在两种数据锁定模型中,锁都是在将更改提交给数据库后释放的。
其他回答
乐观锁定的一个用例是让应用程序使用数据库允许其中一个线程/主机“声明”任务。这是一个经常为我派上用场的技巧。
我能想到的最好的例子是使用数据库实现的任务队列,多个线程同时声明任务。如果一个任务有状态'Available', 'Claimed', 'Completed', db查询可以这样说:Set status='Claimed' where status='Available'。如果多个线程试图以这种方式改变状态,那么除了第一个线程之外,其他线程都会因为脏数据而失败。
注意,这是一个只涉及乐观锁定的用例。因此,作为“乐观锁定用于不期望有太多冲突的情况”的替代说法,它也可以用于您期望有冲突但只希望一个事务成功的情况。
更实际的一点是,在更新分布式系统时,DB中的乐观锁定可能不足以在分布式系统的所有部分之间提供所需的一致性。
例如,在AWS上构建的应用程序中,数据通常同时存在于DB(例如DynamoDB)和存储(例如S3)中。如果一个更新同时涉及DynamoDB和S3, DynamoDB中的乐观锁定仍然可能使S3中的数据不一致。在这种情况下,使用在DynamoDB中持有的悲观锁可能更安全,直到S3更新完成。事实上,AWS为此目的提供了一个锁定库。
乐观锁定是一种策略,你读取一条记录,记下版本号(其他方法包括日期、时间戳或校验和/哈希),并在写回记录之前检查版本是否没有改变。当您写回记录时,您过滤了版本上的更新,以确保它是原子的。(即在你检查版本和将记录写入磁盘之间没有更新)和一次更新版本。
如果记录是脏的(即不同于你的版本),你中止事务,用户可以重新启动它。
这种策略最适用于大容量系统和三层体系结构,在这些体系结构中,您不必为会话维护到数据库的连接。在这种情况下,客户端实际上无法维护数据库锁,因为连接来自一个池,并且您可能不会在一次访问到下一次访问时使用相同的连接。
悲观锁定是指将记录锁定为专属使用,直到使用完毕为止。它比乐观锁具有更好的完整性,但要求您在应用程序设计时要小心,以避免死锁。要使用悲观锁定,您需要一个到数据库的直接连接(在两层客户端服务器应用程序中通常是这样),或者一个可以独立于连接使用的外部可用事务ID。
在后一种情况下,使用TxID打开事务,然后使用该ID重新连接。DBMS维护锁,并允许您通过TxID恢复会话。这就是使用两阶段提交协议(如XA或COM+事务)的分布式事务的工作方式。
在大多数情况下,乐观锁定的效率更高,性能也更高。在悲观锁定和乐观锁定之间进行选择时,请考虑以下因素:
Pessimistic locking is useful if there are a lot of updates and relatively high chances of users trying to update data at the same time. For example, if each operation can update a large number of records at a time (the bank might add interest earnings to every account at the end of each month), and two applications are running such operations at the same time, they will have conflicts. Pessimistic locking is also more appropriate in applications that contain small tables that are frequently updated. In the case of these so-called hotspots, conflicts are so probable that optimistic locking wastes effort in rolling back conflicting transactions. Optimistic locking is useful if the possibility for conflicts is very low – there are many records but relatively few users, or very few updates and mostly read-type operations.
在处理冲突时,你有两种选择:
您可以尝试避免冲突,这就是悲观锁定所做的。 或者,您可以允许冲突发生,但是您需要在提交事务时检测它,这就是乐观锁定所做的。
现在,让我们考虑以下丢失更新异常:
“丢失更新”异常可能发生在“读提交”隔离级别。
在上面的图表中,我们可以看到Alice认为她可以从她的账户中提取40,但没有意识到Bob刚刚改变了账户余额,现在这个账户中只剩下20了。
悲观锁定
悲观锁定通过对帐户使用共享或读锁定来实现这一目标,从而阻止Bob更改帐户。
在上面的图中,Alice和Bob都将获得两个用户都读过的帐户表行上的读锁。当使用可重复读取或可串行化时,数据库在SQL Server上获得这些锁。
因为Alice和Bob都读取了PK值为1的帐户,所以他们都不能更改它,直到一个用户释放读锁。这是因为写操作需要获取写/排他锁,而共享/读锁阻止了写/排他锁。
只有在Alice提交了她的事务并且在帐户行上释放了读锁之后,Bob UPDATE才会恢复并应用更改。在Alice释放读锁之前,Bob的UPDATE会阻塞。
乐观锁定
乐观锁定允许发生冲突,但在应用Alice的UPDATE时检测到它,因为版本已经更改。
这一次,我们有一个额外的版本列。每次执行UPDATE或DELETE时,版本列都会递增,它也用于UPDATE和DELETE语句的WHERE子句中。为此,我们需要发出SELECT并在执行UPDATE或DELETE之前读取当前版本,否则,我们将不知道将哪个版本值传递给WHERE子句或增加哪个版本值。
应用级事务
关系数据库系统出现于70年代末80年代初,当时客户端通常通过终端连接到主机。这就是为什么我们仍然看到数据库系统定义诸如SESSION设置之类的术语。
如今,在Internet上,我们不再在同一个数据库事务的上下文中执行读写操作,ACID也不再足够了。
例如,考虑以下用例:
如果没有乐观锁定,即使数据库事务使用Serializable,也无法捕获这个Lost Update。这是因为读写在不同的HTTP请求中执行,因此在不同的数据库事务上执行。
因此,即使在使用包含用户思考时间的应用程序级事务时,乐观锁定也可以帮助您防止丢失更新。
结论
乐观锁定是一种非常有用的技术,即使在使用不太严格的隔离级别(如Read Committed)或在后续数据库事务中执行读写时,它也能很好地工作。
乐观锁定的缺点是,在捕获OptimisticLockException时,数据访问框架将触发回滚,因此当前正在执行的事务将丢失之前所做的所有工作。
争用越多,冲突就越多,中止事务的机会就越大。回滚对于数据库系统来说代价很高,因为它需要恢复所有当前挂起的更改,这些更改可能涉及表行和索引记录。
因此,当冲突频繁发生时,悲观锁定可能更适合,因为它减少了回滚事务的机会。