我做了一个函数,它将在字典中查找年龄并显示匹配的名字:

dictionary = {'george' : 16, 'amber' : 19}
search_age = raw_input("Provide age")
for age in dictionary.values():
    if age == search_age:
        name = dictionary[age]
        print name

我知道如何比较和查找年龄,只是不知道如何显示这个人的名字。此外,由于第5行,我得到了一个KeyError。我知道这是不正确的,但我不知道如何让它向后搜索。


当前回答

如果希望根据值查找键,可以使用字典推导式创建查找字典,然后使用该字典从值中查找键。

lookup = {value: key for key, value in self.data}
lookup[value]

其他回答

get_key = lambda v, d: next(k for k in d if d[k] is v)

它被回答了,但它可以用一个奇特的“映射/减少”使用来完成,例如:

def find_key(value, dictionary):
    return reduce(lambda x, y: x if x is not None else y,
                  map(lambda x: x[0] if x[1] == value else None, 
                      dictionary.iteritems()))

已经回答了,但由于一些人提到反转字典,下面是如何在一行中做到这一点(假设1:1映射)和一些各种性能数据:

python 2.6:

reversedict = dict([(value, key) for key, value in mydict.iteritems()])

+ 2.7:

reversedict = {value:key for key, value in mydict.iteritems()}

如果你认为不是1:1,你仍然可以用几行创建一个合理的反向映射:

reversedict = defaultdict(list)
[reversedict[value].append(key) for key, value in mydict.iteritems()]

这有多慢:比简单的搜索慢,但远没有你想象的那么慢——在一个“直接”100000条目的字典上,“快速”搜索(即查找键前面的值)比反转整个字典快10倍左右,而“缓慢”搜索(接近结尾)大约快4-5倍。所以最多查找10次,就能收回成本。

第二个版本(每个项目都有列表)大约是简单版本的2.5倍。

largedict = dict((x,x) for x in range(100000))

# Should be slow, has to search 90000 entries before it finds it
In [26]: %timeit largedict.keys()[largedict.values().index(90000)]
100 loops, best of 3: 4.81 ms per loop

# Should be fast, has to only search 9 entries to find it. 
In [27]: %timeit largedict.keys()[largedict.values().index(9)]
100 loops, best of 3: 2.94 ms per loop

# How about using iterkeys() instead of keys()?
# These are faster, because you don't have to create the entire keys array.
# You DO have to create the entire values array - more on that later.

In [31]: %timeit islice(largedict.iterkeys(), largedict.values().index(90000))
100 loops, best of 3: 3.38 ms per loop

In [32]: %timeit islice(largedict.iterkeys(), largedict.values().index(9))
1000 loops, best of 3: 1.48 ms per loop

In [24]: %timeit reversedict = dict([(value, key) for key, value in largedict.iteritems()])
10 loops, best of 3: 22.9 ms per loop

In [23]: %%timeit
....: reversedict = defaultdict(list)
....: [reversedict[value].append(key) for key, value in largedict.iteritems()]
....:
10 loops, best of 3: 53.6 ms per loop

过滤器也有一些有趣的结果。理论上,filter应该更快,因为我们可以使用itervalues(),而且可能不需要创建/遍历整个值列表。在实践中,结果是……奇怪的……

In [72]: %%timeit
....: myf = ifilter(lambda x: x[1] == 90000, largedict.iteritems())
....: myf.next()[0]
....:
100 loops, best of 3: 15.1 ms per loop

In [73]: %%timeit
....: myf = ifilter(lambda x: x[1] == 9, largedict.iteritems())
....: myf.next()[0]
....:
100000 loops, best of 3: 2.36 us per loop

因此,对于小偏移量,它比以前的任何版本都要快得多(2.36 *u*S vs.以前的情况下至少1.48 *m*S)。然而,对于接近列表末尾的大偏移量,它会显着变慢(15.1ms vs.相同的1.48mS)。以我之见,在低端产品上节省下来的少量成本,在高端产品上的成本是不值的。

你可以通过使用dict.keys(), dict.values()和list.index()方法来获取key,参见下面的代码示例:

names_dict = {'george':16,'amber':19}
search_age = int(raw_input("Provide age"))
key = names_dict.keys()[names_dict.values().index(search_age)]

这是你访问字典做你想做的事情的方式:

list = {'george': 16, 'amber': 19}
search_age = raw_input("Provide age")
for age in list:
    if list[age] == search_age:
        print age

当然,你们的名字太离谱了,看起来像是要打印一个年龄,但它确实打印了名字。因为你是通过名字来访问的,所以如果你这样写会更容易理解:

list = {'george': 16, 'amber': 19}
search_age = raw_input("Provide age")
for name in list:
    if list[name] == search_age:
        print name

更好的是:

people = {'george': {'age': 16}, 'amber': {'age': 19}}
search_age = raw_input("Provide age")
for name in people:
    if people[name]['age'] == search_age:
        print name