问:Java中的异常处理真的很慢吗?

传统观点以及大量谷歌结果表明,不应该将异常逻辑用于Java中的正常程序流。通常会给出两个原因,

它真的很慢——甚至比普通代码慢一个数量级(给出的原因各不相同),

and

它很混乱,因为人们只希望在异常代码中处理错误。

这个问题是关于第一条的。

As an example, this page describes Java exception handling as "very slow" and relates the slowness to the creation of the exception message string - "this string is then used in creating the exception object that is thrown. This is not fast." The article Effective Exception Handling in Java says that "the reason for this is due to the object creation aspect of exception handling, which thereby makes throwing exceptions inherently slow". Another reason out there is that the stack trace generation is what slows it down.

My testing (using Java 1.6.0_07, Java HotSpot 10.0, on 32 bit Linux), indicates that exception handling is no slower than regular code. I tried running a method in a loop that executes some code. At the end of the method, I use a boolean to indicate whether to return or throw. This way the actual processing is the same. I tried running the methods in different orders and averaging my test times, thinking it may have been the JVM warming up. In all my tests, the throw was at least as fast as the return, if not faster (up to 3.1% faster). I am completely open to the possibility that my tests were wrong, but I haven't seen anything out there in the way of the code sample, test comparisons, or results in the last year or two that show exception handling in Java to actually be slow.

引导我走上这条路的是我需要使用的一个API,它将抛出异常作为正常控制逻辑的一部分。我想纠正它们的用法,但现在我可能做不到。我是否应该赞美他们的前瞻思维?

在论文《即时编译中的高效Java异常处理》中,作者建议,即使没有抛出异常,仅异常处理程序的存在就足以阻止JIT编译器正确优化代码,从而降低代码的速度。我还没有测试过这个理论。


当前回答

Java和c#中的异常性能还有待改进。

作为程序员,这迫使我们遵循“异常应该很少引起”的规则,仅仅是出于实际性能的考虑。

However, as computer scientists, we should rebel against this problematic state. The person authoring a function often has no idea how often it will be called, or whether success or failure is more likely. Only the caller has this information. Trying to avoid exceptions leads to unclear API idoms where in some cases we have only clean-but-slow exception versions, and in other cases we have fast-but-clunky return-value errors, and in still other cases we end up with both. The library implementor may have to write and maintain two versions of APIs, and the caller has to decide which of two versions to use in each situation.

这里有点乱。如果异常具有更好的性能,我们就可以避免这些笨拙的习惯用法,并按照它们应该使用的方式使用异常……作为结构化错误返回工具。

我真的希望看到异常机制使用更接近返回值的技术来实现,这样我们的性能就能更接近返回值。因为这是我们在性能敏感代码中恢复的内容。

下面是一个比较异常性能和错误返回值性能的代码示例。

公共类test {

int value;


public int getValue() {
    return value;
}

public void reset() {
    value = 0;
}

public boolean baseline_null(boolean shouldfail, int recurse_depth) {
    if (recurse_depth <= 0) {
        return shouldfail;
    } else {
        return baseline_null(shouldfail,recurse_depth-1);
    }
}

public boolean retval_error(boolean shouldfail, int recurse_depth) {
    if (recurse_depth <= 0) {
        if (shouldfail) {
            return false;
        } else {
            return true;
        }
    } else {
        boolean nested_error = retval_error(shouldfail,recurse_depth-1);
        if (nested_error) {
            return true;
        } else {
            return false;
        }
    }
}

public void exception_error(boolean shouldfail, int recurse_depth) throws Exception {
    if (recurse_depth <= 0) {
        if (shouldfail) {
            throw new Exception();
        }
    } else {
        exception_error(shouldfail,recurse_depth-1);
    }

}

public static void main(String[] args) {
    int i;
    long l;
    TestIt t = new TestIt();
    int failures;

    int ITERATION_COUNT = 100000000;


    // (0) baseline null workload
    for (int recurse_depth = 2; recurse_depth <= 10; recurse_depth+=3) {
        for (float exception_freq = 0.0f; exception_freq <= 1.0f; exception_freq += 0.25f) {            
            int EXCEPTION_MOD = (exception_freq == 0.0f) ? ITERATION_COUNT+1 : (int)(1.0f / exception_freq);            

            failures = 0;
            long start_time = System.currentTimeMillis();
            t.reset();              
            for (i = 1; i < ITERATION_COUNT; i++) {
                boolean shoulderror = (i % EXCEPTION_MOD) == 0;
                t.baseline_null(shoulderror,recurse_depth);
            }
            long elapsed_time = System.currentTimeMillis() - start_time;
            System.out.format("baseline: recurse_depth %s, exception_freqeuncy %s (%s), time elapsed %s ms\n",
                    recurse_depth, exception_freq, failures,elapsed_time);
        }
    }


    // (1) retval_error
    for (int recurse_depth = 2; recurse_depth <= 10; recurse_depth+=3) {
        for (float exception_freq = 0.0f; exception_freq <= 1.0f; exception_freq += 0.25f) {            
            int EXCEPTION_MOD = (exception_freq == 0.0f) ? ITERATION_COUNT+1 : (int)(1.0f / exception_freq);            

            failures = 0;
            long start_time = System.currentTimeMillis();
            t.reset();              
            for (i = 1; i < ITERATION_COUNT; i++) {
                boolean shoulderror = (i % EXCEPTION_MOD) == 0;
                if (!t.retval_error(shoulderror,recurse_depth)) {
                    failures++;
                }
            }
            long elapsed_time = System.currentTimeMillis() - start_time;
            System.out.format("retval_error: recurse_depth %s, exception_freqeuncy %s (%s), time elapsed %s ms\n",
                    recurse_depth, exception_freq, failures,elapsed_time);
        }
    }

    // (2) exception_error
    for (int recurse_depth = 2; recurse_depth <= 10; recurse_depth+=3) {
        for (float exception_freq = 0.0f; exception_freq <= 1.0f; exception_freq += 0.25f) {            
            int EXCEPTION_MOD = (exception_freq == 0.0f) ? ITERATION_COUNT+1 : (int)(1.0f / exception_freq);            

            failures = 0;
            long start_time = System.currentTimeMillis();
            t.reset();              
            for (i = 1; i < ITERATION_COUNT; i++) {
                boolean shoulderror = (i % EXCEPTION_MOD) == 0;
                try {
                    t.exception_error(shoulderror,recurse_depth);
                } catch (Exception e) {
                    failures++;
                }
            }
            long elapsed_time = System.currentTimeMillis() - start_time;
            System.out.format("exception_error: recurse_depth %s, exception_freqeuncy %s (%s), time elapsed %s ms\n",
                    recurse_depth, exception_freq, failures,elapsed_time);              
        }
    }
}

}

结果如下:

baseline: recurse_depth 2, exception_freqeuncy 0.0 (0), time elapsed 683 ms
baseline: recurse_depth 2, exception_freqeuncy 0.25 (0), time elapsed 790 ms
baseline: recurse_depth 2, exception_freqeuncy 0.5 (0), time elapsed 768 ms
baseline: recurse_depth 2, exception_freqeuncy 0.75 (0), time elapsed 749 ms
baseline: recurse_depth 2, exception_freqeuncy 1.0 (0), time elapsed 731 ms
baseline: recurse_depth 5, exception_freqeuncy 0.0 (0), time elapsed 923 ms
baseline: recurse_depth 5, exception_freqeuncy 0.25 (0), time elapsed 971 ms
baseline: recurse_depth 5, exception_freqeuncy 0.5 (0), time elapsed 982 ms
baseline: recurse_depth 5, exception_freqeuncy 0.75 (0), time elapsed 947 ms
baseline: recurse_depth 5, exception_freqeuncy 1.0 (0), time elapsed 937 ms
baseline: recurse_depth 8, exception_freqeuncy 0.0 (0), time elapsed 1154 ms
baseline: recurse_depth 8, exception_freqeuncy 0.25 (0), time elapsed 1149 ms
baseline: recurse_depth 8, exception_freqeuncy 0.5 (0), time elapsed 1133 ms
baseline: recurse_depth 8, exception_freqeuncy 0.75 (0), time elapsed 1117 ms
baseline: recurse_depth 8, exception_freqeuncy 1.0 (0), time elapsed 1116 ms
retval_error: recurse_depth 2, exception_freqeuncy 0.0 (0), time elapsed 742 ms
retval_error: recurse_depth 2, exception_freqeuncy 0.25 (24999999), time elapsed 743 ms
retval_error: recurse_depth 2, exception_freqeuncy 0.5 (49999999), time elapsed 734 ms
retval_error: recurse_depth 2, exception_freqeuncy 0.75 (99999999), time elapsed 723 ms
retval_error: recurse_depth 2, exception_freqeuncy 1.0 (99999999), time elapsed 728 ms
retval_error: recurse_depth 5, exception_freqeuncy 0.0 (0), time elapsed 920 ms
retval_error: recurse_depth 5, exception_freqeuncy 0.25 (24999999), time elapsed 1121   ms
retval_error: recurse_depth 5, exception_freqeuncy 0.5 (49999999), time elapsed 1037 ms
retval_error: recurse_depth 5, exception_freqeuncy 0.75 (99999999), time elapsed 1141   ms
retval_error: recurse_depth 5, exception_freqeuncy 1.0 (99999999), time elapsed 1130 ms
retval_error: recurse_depth 8, exception_freqeuncy 0.0 (0), time elapsed 1218 ms
retval_error: recurse_depth 8, exception_freqeuncy 0.25 (24999999), time elapsed 1334  ms
retval_error: recurse_depth 8, exception_freqeuncy 0.5 (49999999), time elapsed 1478 ms
retval_error: recurse_depth 8, exception_freqeuncy 0.75 (99999999), time elapsed 1637 ms
retval_error: recurse_depth 8, exception_freqeuncy 1.0 (99999999), time elapsed 1655 ms
exception_error: recurse_depth 2, exception_freqeuncy 0.0 (0), time elapsed 726 ms
exception_error: recurse_depth 2, exception_freqeuncy 0.25 (24999999), time elapsed 17487   ms
exception_error: recurse_depth 2, exception_freqeuncy 0.5 (49999999), time elapsed 33763   ms
exception_error: recurse_depth 2, exception_freqeuncy 0.75 (99999999), time elapsed 67367   ms
exception_error: recurse_depth 2, exception_freqeuncy 1.0 (99999999), time elapsed 66990 ms
exception_error: recurse_depth 5, exception_freqeuncy 0.0 (0), time elapsed 924 ms
exception_error: recurse_depth 5, exception_freqeuncy 0.25 (24999999), time elapsed 23775  ms
exception_error: recurse_depth 5, exception_freqeuncy 0.5 (49999999), time elapsed 46326 ms
exception_error: recurse_depth 5, exception_freqeuncy 0.75 (99999999), time elapsed 91707 ms
exception_error: recurse_depth 5, exception_freqeuncy 1.0 (99999999), time elapsed 91580 ms
exception_error: recurse_depth 8, exception_freqeuncy 0.0 (0), time elapsed 1144 ms
exception_error: recurse_depth 8, exception_freqeuncy 0.25 (24999999), time elapsed 30440 ms
exception_error: recurse_depth 8, exception_freqeuncy 0.5 (49999999), time elapsed 59116   ms
exception_error: recurse_depth 8, exception_freqeuncy 0.75 (99999999), time elapsed 116678 ms
exception_error: recurse_depth 8, exception_freqeuncy 1.0 (99999999), time elapsed 116477 ms

检查和传播返回值与基线空调用相比确实增加了一些成本,而该成本与调用深度成正比。在调用链深度为8时,错误返回值检查版本比不检查返回值的基线版本慢了约27%。

相比之下,异常性能不是调用深度的函数,而是异常频率的函数。然而,随着异常频率的增加,这种退化更为显著。当错误频率只有25%时,代码运行速度变慢了24倍。当错误频率为100%时,异常版本几乎要慢100倍。

这在我看来可能是在我们的异常实现中做出了错误的权衡。异常可以更快,可以避免代价高昂的跟踪遍历,也可以直接将异常转换为编译器支持的返回值检查。在此之前,当我们希望代码运行得更快时,我们不得不避免它们。

其他回答

即使抛出异常并不慢,对于正常的程序流抛出异常仍然是一个坏主意。使用这种方式,它是类似于GOTO…

我想这并没有真正回答问题。我想抛出异常的“传统”智慧在早期的java版本(< 1.4)中是正确的。创建异常需要虚拟机创建整个堆栈跟踪。从那时起,在VM中发生了很多变化,以加快速度,这可能是已经改进的一个领域。

我对异常速度和以编程方式检查数据的看法。

许多类都有字符串到值的转换器(扫描器/解析器),也有受人尊敬和知名的库;)

通常有形式

class Example {
public static Example Parse(String input) throws AnyRuntimeParsigException
...
}

异常名称只是例子,通常是未选中的(运行时),所以抛出声明只是我的图片

有时存在第二种形式:

public static Example Parse(String input, Example defaultValue)

不扔

当第二个文件不可用时(或者程序员读的文档太少,只使用第一个文件),用正则表达式编写这样的代码。正则表达式很酷,政治正确等:

Xxxxx.regex(".....pattern", src);
if(ImTotallySure)
{
  Example v = Example.Parse(src);
}

使用这段代码,程序员没有异常成本。BUT具有相当高的代价的正则表达式ALWAYS与小的代价异常有时。

我几乎总是在这种情况下使用

try { parse } catch(ParsingException ) // concrete exception from javadoc
{
}

没有分析堆栈跟踪等,我相信在你的讲座后相当快。

不要害怕例外情况

不知道这些主题是否相关,但我曾经想实现一个依赖于当前线程的堆栈跟踪的技巧:我想发现方法的名称,它触发了实例化类中的实例化(是的,这个想法很疯狂,我完全放弃了它)。所以我发现调用Thread.currentThread(). getstacktrace()是非常慢的(由于本机的dumpThreads方法,它在内部使用)。

相应地,Java Throwable有一个本地方法fillInStackTrace。我认为前面描述的kill -catch块以某种方式触发了该方法的执行。

但让我告诉你另一个故事……

在Scala中,一些函数特性是使用ControlThrowable在JVM中编译的,它扩展了Throwable,并以以下方式覆盖了它的fillInStackTrace:

override def fillInStackTrace(): Throwable = this

所以我调整了上面的测试(循环量减少了十,我的机器有点慢:):

class ControlException extends ControlThrowable

class T {
  var value = 0

  def reset = {
    value = 0
  }

  def method1(i: Int) = {
    value = ((value + i) / i) << 1
    if ((i & 0xfffffff) == 1000000000) {
      println("You'll never see this!")
    }
  }

  def method2(i: Int) = {
    value = ((value + i) / i) << 1
    if ((i & 0xfffffff) == 1000000000) {
      throw new Exception()
    }
  }

  def method3(i: Int) = {
    value = ((value + i) / i) << 1
    if ((i & 0x1) == 1) {
      throw new Exception()
    }
  }

  def method4(i: Int) = {
    value = ((value + i) / i) << 1
    if ((i & 0x1) == 1) {
      throw new ControlException()
    }
  }
}

class Main {
  var l = System.currentTimeMillis
  val t = new T
  for (i <- 1 to 10000000)
    t.method1(i)
  l = System.currentTimeMillis - l
  println("method1 took " + l + " ms, result was " + t.value)

  t.reset
  l = System.currentTimeMillis
  for (i <- 1 to 10000000) try {
    t.method2(i)
  } catch {
    case _ => println("You'll never see this")
  }
  l = System.currentTimeMillis - l
  println("method2 took " + l + " ms, result was " + t.value)

  t.reset
  l = System.currentTimeMillis
  for (i <- 1 to 10000000) try {
    t.method4(i)
  } catch {
    case _ => // do nothing
  }
  l = System.currentTimeMillis - l
  println("method4 took " + l + " ms, result was " + t.value)

  t.reset
  l = System.currentTimeMillis
  for (i <- 1 to 10000000) try {
    t.method3(i)
  } catch {
    case _ => // do nothing
  }
  l = System.currentTimeMillis - l
  println("method3 took " + l + " ms, result was " + t.value)

}

所以,结果是:

method1 took 146 ms, result was 2
method2 took 159 ms, result was 2
method4 took 1551 ms, result was 2
method3 took 42492 ms, result was 2

你看,method3和method4之间唯一的区别是它们会抛出不同类型的异常。是的,method4仍然比method1和method2慢,但是差异是可以接受的。

关于异常性能的好文章是:

https://shipilev.net/blog/2014/exceptional-performance/

实例化vs重用现有的,有堆栈跟踪和没有,等等:

Benchmark                            Mode   Samples         Mean   Mean error  Units

dynamicException                     avgt        25     1901.196       14.572  ns/op
dynamicException_NoStack             avgt        25       67.029        0.212  ns/op
dynamicException_NoStack_UsedData    avgt        25       68.952        0.441  ns/op
dynamicException_NoStack_UsedStack   avgt        25      137.329        1.039  ns/op
dynamicException_UsedData            avgt        25     1900.770        9.359  ns/op
dynamicException_UsedStack           avgt        25    20033.658      118.600  ns/op

plain                                avgt        25        1.259        0.002  ns/op
staticException                      avgt        25        1.510        0.001  ns/op
staticException_NoStack              avgt        25        1.514        0.003  ns/op
staticException_NoStack_UsedData     avgt        25        4.185        0.015  ns/op
staticException_NoStack_UsedStack    avgt        25       19.110        0.051  ns/op
staticException_UsedData             avgt        25        4.159        0.007  ns/op
staticException_UsedStack            avgt        25       25.144        0.186  ns/op

根据堆栈跟踪的深度:

Benchmark        Mode   Samples         Mean   Mean error  Units

exception_0000   avgt        25     1959.068       30.783  ns/op
exception_0001   avgt        25     1945.958       12.104  ns/op
exception_0002   avgt        25     2063.575       47.708  ns/op
exception_0004   avgt        25     2211.882       29.417  ns/op
exception_0008   avgt        25     2472.729       57.336  ns/op
exception_0016   avgt        25     2950.847       29.863  ns/op
exception_0032   avgt        25     4416.548       50.340  ns/op
exception_0064   avgt        25     6845.140       40.114  ns/op
exception_0128   avgt        25    11774.758       54.299  ns/op
exception_0256   avgt        25    21617.526      101.379  ns/op
exception_0512   avgt        25    42780.434      144.594  ns/op
exception_1024   avgt        25    82839.358      291.434  ns/op

有关其他详细信息(包括来自JIT的x64汇编程序),请阅读原始博客文章。

这意味着Hibernate/Spring/etc-EE-shit因为异常(xD)而变慢。

通过重写应用程序控制流,避免异常(返回错误作为返回),提高应用程序的性能10 -100倍,这取决于你抛出它们的频率))

比较一下,假设是Integer。将parseInt转换为以下方法,该方法在不可解析数据的情况下只返回默认值,而不会抛出异常:

  public static int parseUnsignedInt(String s, int defaultValue) {
    final int strLength = s.length();
    if (strLength == 0)
      return defaultValue;
    int value = 0;
    for (int i=strLength-1; i>=0; i--) {
      int c = s.charAt(i);
      if (c > 47 && c < 58) {
        c -= 48;
        for (int j=strLength-i; j!=1; j--)
          c *= 10;
        value += c;
      } else {
        return defaultValue;
      }
    }
    return value < 0 ? /* übergebener wert > Integer.MAX_VALUE? */ defaultValue : value;
  }

只要您将这两种方法应用于“有效”数据,它们将以大致相同的速率工作(即使Integer。parseInt设法处理更复杂的数据)。但是当您试图解析无效数据时(例如解析“abc”1.000.000次),性能上的差异应该是至关重要的。