我有一个熊猫DataFrame与“日期”列。现在我需要过滤掉DataFrame中日期在未来两个月之外的所有行。实际上,我只需要保留接下来两个月内的行。

实现这一目标的最佳方式是什么?


当前回答

你可以用pd。时间戳来执行查询和本地引用

import pandas as pd
import numpy as np

df = pd.DataFrame()
ts = pd.Timestamp

df['date'] = np.array(np.arange(10) + datetime.now().timestamp(), dtype='M8[s]')

print(df)
print(df.query('date > @ts("20190515T071320")')

输出

                 date
0 2019-05-15 07:13:16
1 2019-05-15 07:13:17
2 2019-05-15 07:13:18
3 2019-05-15 07:13:19
4 2019-05-15 07:13:20
5 2019-05-15 07:13:21
6 2019-05-15 07:13:22
7 2019-05-15 07:13:23
8 2019-05-15 07:13:24
9 2019-05-15 07:13:25


                 date
5 2019-05-15 07:13:21
6 2019-05-15 07:13:22
7 2019-05-15 07:13:23
8 2019-05-15 07:13:24
9 2019-05-15 07:13:25

看看DataFrame的pandas文档。查询,特别是提到局部变量引用udsing @前缀。在这种情况下,我们引用pd。使用本地别名ts来提供时间戳字符串

其他回答

如果您已经使用pd将字符串转换为日期格式。To_datetime你可以使用:

df = df [(df[日期]>”2018-01-01”)及(df[日期]<”2019-07-01”)

在pandas版本1.1.3中,我遇到了基于python datetime的索引降序排列的情况。在这种情况下

df.loc['2021-08-01':'2021-08-31']

返回空的。而

df.loc['2021-08-31':'2021-08-01']

返回预期的数据。

按日期过滤数据帧的最短方法: 假设你的日期列的类型是datetime64[ns]

# filter by single day
df_filtered = df[df['date'].dt.strftime('%Y-%m-%d') == '2014-01-01']

# filter by single month
df_filtered = df[df['date'].dt.strftime('%Y-%m') == '2014-01']

# filter by single year
df_filtered = df[df['date'].dt.strftime('%Y') == '2014']
# 60 days from today
after_60d = pd.to_datetime('today').date() + datetime.timedelta(days=60)
# filter date col less than 60 days date
df[df['date_col'] < after_60d]

你可以用pd。时间戳来执行查询和本地引用

import pandas as pd
import numpy as np

df = pd.DataFrame()
ts = pd.Timestamp

df['date'] = np.array(np.arange(10) + datetime.now().timestamp(), dtype='M8[s]')

print(df)
print(df.query('date > @ts("20190515T071320")')

输出

                 date
0 2019-05-15 07:13:16
1 2019-05-15 07:13:17
2 2019-05-15 07:13:18
3 2019-05-15 07:13:19
4 2019-05-15 07:13:20
5 2019-05-15 07:13:21
6 2019-05-15 07:13:22
7 2019-05-15 07:13:23
8 2019-05-15 07:13:24
9 2019-05-15 07:13:25


                 date
5 2019-05-15 07:13:21
6 2019-05-15 07:13:22
7 2019-05-15 07:13:23
8 2019-05-15 07:13:24
9 2019-05-15 07:13:25

看看DataFrame的pandas文档。查询,特别是提到局部变量引用udsing @前缀。在这种情况下,我们引用pd。使用本地别名ts来提供时间戳字符串