我想按多列对数据帧进行排序。例如,对于下面的数据帧,我希望按列“z”(降序)排序,然后按列“b”(升序)排序:

dd <- data.frame(b = factor(c("Hi", "Med", "Hi", "Low"), 
      levels = c("Low", "Med", "Hi"), ordered = TRUE),
      x = c("A", "D", "A", "C"), y = c(8, 3, 9, 9),
      z = c(1, 1, 1, 2))
dd
    b x y z
1  Hi A 8 1
2 Med D 3 1
3  Hi A 9 1
4 Low C 9 2

当前回答

针对OP中添加的关于如何以编程方式排序的注释:

使用dplyr和data.table

library(dplyr)
library(data.table)

dplyr公司

只需使用arrange_,这是arrange的标准评估版本。

df1 <- tbl_df(iris)
#using strings or formula
arrange_(df1, c('Petal.Length', 'Petal.Width'))
arrange_(df1, ~Petal.Length, ~Petal.Width)
    Source: local data frame [150 x 5]

   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
          (dbl)       (dbl)        (dbl)       (dbl)  (fctr)
1           4.6         3.6          1.0         0.2  setosa
2           4.3         3.0          1.1         0.1  setosa
3           5.8         4.0          1.2         0.2  setosa
4           5.0         3.2          1.2         0.2  setosa
5           4.7         3.2          1.3         0.2  setosa
6           5.4         3.9          1.3         0.4  setosa
7           5.5         3.5          1.3         0.2  setosa
8           4.4         3.0          1.3         0.2  setosa
9           5.0         3.5          1.3         0.3  setosa
10          4.5         2.3          1.3         0.3  setosa
..          ...         ...          ...         ...     ...


#Or using a variable
sortBy <- c('Petal.Length', 'Petal.Width')
arrange_(df1, .dots = sortBy)
    Source: local data frame [150 x 5]

   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
          (dbl)       (dbl)        (dbl)       (dbl)  (fctr)
1           4.6         3.6          1.0         0.2  setosa
2           4.3         3.0          1.1         0.1  setosa
3           5.8         4.0          1.2         0.2  setosa
4           5.0         3.2          1.2         0.2  setosa
5           4.7         3.2          1.3         0.2  setosa
6           5.5         3.5          1.3         0.2  setosa
7           4.4         3.0          1.3         0.2  setosa
8           4.4         3.2          1.3         0.2  setosa
9           5.0         3.5          1.3         0.3  setosa
10          4.5         2.3          1.3         0.3  setosa
..          ...         ...          ...         ...     ...

#Doing the same operation except sorting Petal.Length in descending order
sortByDesc <- c('desc(Petal.Length)', 'Petal.Width')
arrange_(df1, .dots = sortByDesc)

更多信息请点击此处:https://cran.r-project.org/web/packages/dplyr/vignettes/nse.html

最好使用公式,因为它还可以捕获环境来计算表达式

数据表

dt1 <- data.table(iris) #not really required, as you can work directly on your data.frame
sortBy <- c('Petal.Length', 'Petal.Width')
sortType <- c(-1, 1)
setorderv(dt1, sortBy, sortType)
dt1
     Sepal.Length Sepal.Width Petal.Length Petal.Width   Species
  1:          7.7         2.6          6.9         2.3 virginica
  2:          7.7         2.8          6.7         2.0 virginica
  3:          7.7         3.8          6.7         2.2 virginica
  4:          7.6         3.0          6.6         2.1 virginica
  5:          7.9         3.8          6.4         2.0 virginica
 ---                                                            
146:          5.4         3.9          1.3         0.4    setosa
147:          5.8         4.0          1.2         0.2    setosa
148:          5.0         3.2          1.2         0.2    setosa
149:          4.3         3.0          1.1         0.1    setosa
150:          4.6         3.6          1.0         0.2    setosa

其他回答

有了凯文·赖特(Kevin Wright)在R维基的提示部分发布的这个(非常有用的)功能,这很容易实现。

sort(dd,by = ~ -z + b)
#     b x y z
# 4 Low C 9 2
# 2 Med D 3 1
# 1  Hi A 8 1
# 3  Hi A 9 1

为了完整起见,由于没有太多关于按列编号排序的内容。。。可以肯定的是,这通常是不可取的(因为列的顺序可能会改变,为错误铺平道路),但在某些特定情况下(例如,当您需要快速完成工作,并且没有列改变顺序的风险),这可能是最明智的做法,尤其是在处理大量列时。

在这种情况下,do.call()来拯救:

ind <- do.call(what = "order", args = iris[,c(5,1,2,3)])
iris[ind, ]

##        Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
##    14           4.3         3.0          1.1         0.1     setosa
##    9            4.4         2.9          1.4         0.2     setosa
##    39           4.4         3.0          1.3         0.2     setosa
##    43           4.4         3.2          1.3         0.2     setosa
##    42           4.5         2.3          1.3         0.3     setosa
##    4            4.6         3.1          1.5         0.2     setosa
##    48           4.6         3.2          1.4         0.2     setosa
##    7            4.6         3.4          1.4         0.3     setosa
##    (...)

您可以直接使用order()函数,而无需使用附加工具——请参阅这个更简单的答案,它使用了示例(order)代码顶部的技巧:

R> dd[with(dd, order(-z, b)), ]
    b x y z
4 Low C 9 2
2 Med D 3 1
1  Hi A 8 1
3  Hi A 9 1

两年多后编辑:只是被问到如何按列索引进行编辑。答案是简单地将所需的排序列传递给order()函数:

R> dd[order(-dd[,4], dd[,1]), ]
    b x y z
4 Low C 9 2
2 Med D 3 1
1  Hi A 8 1
3  Hi A 9 1
R> 

而不是使用列的名称(使用with()可以更方便/更直接地访问)。

当我想自动化n列的排序过程时,我正在与上述解决方案作斗争,因为每一列的列名都可能不同。我从psych包中找到了一个非常有用的功能,可以直接实现这一点:

dfOrder(myDf, columnIndices)

其中columnIndex是一个或多个列的索引,按要对其排序的顺序排列。此处提供更多信息:

“psych”包中的dfOrder函数

假设您有一个data.frame a,并且希望使用名为x降序的列对其进行排序。调用排序后的数据。frame newdata

newdata <- A[order(-A$x),]

如果需要升序,请将“-”替换为空。你可以吃类似的东西

newdata <- A[order(-A$x, A$y, -A$z),]

其中x和z是data.frame A中的一些列。这意味着按照x降序、y升序和z降序对data.frameA进行排序。