我有一个数据帧有一个(字符串)列,我想把它分成两个(字符串)列,其中一个列标题为“fips”和另一个“行”

我的数据框架df看起来是这样的:

          row
0    00000 UNITED STATES
1    01000 ALABAMA
2    01001 Autauga County, AL
3    01003 Baldwin County, AL
4    01005 Barbour County, AL

我不知道如何使用df.row。Str[:]来实现拆分行单元格的目标。我可以使用df['fips'] = hello添加一个新列,并用hello填充它。什么好主意吗?

         fips       row
0    00000 UNITED STATES
1    01000 ALABAMA 
2    01001 Autauga County, AL
3    01003 Baldwin County, AL
4    01005 Barbour County, AL

当前回答

没想到我还没见过这个。如果你只需要两段,我强烈推荐…

Series.str.partition

分区在分隔符上执行一次分割,通常性能相当好。

df['row'].str.partition(' ')[[0, 2]]

       0                   2
0  00000       UNITED STATES
1  01000             ALABAMA
2  01001  Autauga County, AL
3  01003  Baldwin County, AL
4  01005  Barbour County, AL

如果需要重命名行,

df['row'].str.partition(' ')[[0, 2]].rename({0: 'fips', 2: 'row'}, axis=1)

    fips                 row
0  00000       UNITED STATES
1  01000             ALABAMA
2  01001  Autauga County, AL
3  01003  Baldwin County, AL
4  01005  Barbour County, AL

如果你需要把它连接回原来的,使用join或concat:

df.join(df['row'].str.partition(' ')[[0, 2]])

pd.concat([df, df['row'].str.partition(' ')[[0, 2]]], axis=1)

                        row      0                   2
0       00000 UNITED STATES  00000       UNITED STATES
1             01000 ALABAMA  01000             ALABAMA
2  01001 Autauga County, AL  01001  Autauga County, AL
3  01003 Baldwin County, AL  01003  Baldwin County, AL
4  01005 Barbour County, AL  01005  Barbour County, AL

其他回答

df[['fips', 'row']] = df['row'].str.split(' ', n=1, expand=True)

我发现没人用切片法,所以我把2美分写在这里。

df["<col_name>"].str.slice(stop=5)
df["<col_name>"].str.slice(start=6)

该方法将创建两个新列。

我更喜欢导出相应的pandas系列(即我需要的列),使用apply函数将列内容拆分为多个系列,然后将生成的列连接到现有的DataFrame。当然,源列应该被删除。

如。

 col1 = df["<col_name>"].apply(<function>)
 col2 = ...
 df = df.join(col1.to_frame(name="<name1>"))
 df = df.join(col2.toframe(name="<name2>"))
 df = df.drop(["<col_name>"], axis=1)

分割两个单词的字符串函数应该是这样的:

lambda x: x.split(" ")[0] # for the first element
lambda x: x.split(" ")[-1] # for the last element

你可以使用str.split by空格(默认分隔符)和参数expand=True为DataFrame赋值给新列:

df = pd.DataFrame({'row': ['00000 UNITED STATES', '01000 ALABAMA', 
                           '01001 Autauga County, AL', '01003 Baldwin County, AL', 
                           '01005 Barbour County, AL']})
print (df)
                        row
0       00000 UNITED STATES
1             01000 ALABAMA
2  01001 Autauga County, AL
3  01003 Baldwin County, AL
4  01005 Barbour County, AL



df[['a','b']] = df['row'].str.split(n=1, expand=True)
print (df)
                        row      a                   b
0       00000 UNITED STATES  00000       UNITED STATES
1             01000 ALABAMA  01000             ALABAMA
2  01001 Autauga County, AL  01001  Autauga County, AL
3  01003 Baldwin County, AL  01003  Baldwin County, AL
4  01005 Barbour County, AL  01005  Barbour County, AL

修改,如果需要删除原始列datafframe .pop

df[['a','b']] = df.pop('row').str.split(n=1, expand=True)
print (df)
       a                   b
0  00000       UNITED STATES
1  01000             ALABAMA
2  01001  Autauga County, AL
3  01003  Baldwin County, AL
4  01005  Barbour County, AL

什么是一样的:

df[['a','b']] = df['row'].str.split(n=1, expand=True)
df = df.drop('row', axis=1)
print (df)

       a                   b
0  00000       UNITED STATES
1  01000             ALABAMA
2  01001  Autauga County, AL
3  01003  Baldwin County, AL
4  01005  Barbour County, AL

如果get错误:

#remove n=1 for split by all whitespaces
df[['a','b']] = df['row'].str.split(expand=True)

ValueError:列的长度必须与键的长度相同

你可以检查,它返回4列DataFrame,而不是只有2:

print (df['row'].str.split(expand=True))
       0        1        2     3
0  00000   UNITED   STATES  None
1  01000  ALABAMA     None  None
2  01001  Autauga  County,    AL
3  01003  Baldwin  County,    AL
4  01005  Barbour  County,    AL

那么解决方案是通过join追加新的DataFrame:

df = pd.DataFrame({'row': ['00000 UNITED STATES', '01000 ALABAMA', 
                           '01001 Autauga County, AL', '01003 Baldwin County, AL', 
                           '01005 Barbour County, AL'],
                    'a':range(5)})
print (df)
   a                       row
0  0       00000 UNITED STATES
1  1             01000 ALABAMA
2  2  01001 Autauga County, AL
3  3  01003 Baldwin County, AL
4  4  01005 Barbour County, AL

df = df.join(df['row'].str.split(expand=True))
print (df)

   a                       row      0        1        2     3
0  0       00000 UNITED STATES  00000   UNITED   STATES  None
1  1             01000 ALABAMA  01000  ALABAMA     None  None
2  2  01001 Autauga County, AL  01001  Autauga  County,    AL
3  3  01003 Baldwin County, AL  01003  Baldwin  County,    AL
4  4  01005 Barbour County, AL  01005  Barbour  County,    AL

与删除原始列(如果还有其他列):

df = df.join(df.pop('row').str.split(expand=True))
print (df)
   a      0        1        2     3
0  0  00000   UNITED   STATES  None
1  1  01000  ALABAMA     None  None
2  2  01001  Autauga  County,    AL
3  3  01003  Baldwin  County,    AL
4  4  01005  Barbour  County,    AL   

如果你想根据分隔符将一个字符串分割成两个以上的列,你可以省略'maximum splitting '参数。 你可以使用:

df['column_name'].str.split('/', expand=True)

这将自动创建与任何初始字符串中包含的最大字段数量相同的列。