如何在Python中获得一个字符串与另一个字符串相似的概率?
我想要得到一个十进制值,比如0.9(意思是90%)等等。最好是标准的Python和库。
e.g.
similar("Apple","Appel") #would have a high prob.
similar("Apple","Mango") #would have a lower prob.
如何在Python中获得一个字符串与另一个字符串相似的概率?
我想要得到一个十进制值,比如0.9(意思是90%)等等。最好是标准的Python和库。
e.g.
similar("Apple","Appel") #would have a high prob.
similar("Apple","Mango") #would have a lower prob.
当前回答
解决方案#1:内置Python
使用difflib中的SequenceMatcher
优点: 本机python库,不需要额外的包。 缺点:太有限了,有很多其他的字符串相似度的好算法。
例子
:>>> from difflib import SequenceMatcher
>>> s = SequenceMatcher(None, "abcd", "bcde")
>>> s.ratio()
0.75
解决方案#2:水母库
这是一个非常好的图书馆,覆盖面广,问题少。 它支持: - Levenshtein距离 -达默罗-利文斯坦距离 ——Jaro Distance - Jaro-Winkler距离 -匹配评级方法比较 -汉明距离
优点: 易于使用,支持的算法的范围,测试。 缺点:不是本地库。
例子:
>>> import jellyfish
>>> jellyfish.levenshtein_distance(u'jellyfish', u'smellyfish')
2
>>> jellyfish.jaro_distance(u'jellyfish', u'smellyfish')
0.89629629629629637
>>> jellyfish.damerau_levenshtein_distance(u'jellyfish', u'jellyfihs')
1
其他回答
出于我的目的,我有自己的quick_ratio(),它比difflib SequenceMatcher的quick_ratio()快2倍,同时提供类似的结果。A和b是字符串:
score = 0
for letters in enumerate(a):
score = score + b.count(letters[1])
BLEUscore
BLEU,即双语评估替补,是一个用于比较的分数 文本到一个或多个参考译文的候选翻译。 完全匹配的结果是1.0,而完全不匹配的结果是1.0 结果得分为0.0。 虽然它是为翻译而开发的,但也可以用来评估文本 为一套自然语言处理任务生成。
代码:
import nltk
from nltk.translate import bleu
from nltk.translate.bleu_score import SmoothingFunction
smoothie = SmoothingFunction().method4
C1='Text'
C2='Best'
print('BLEUscore:',bleu([C1], C2, smoothing_function=smoothie))
示例:通过更新C1和C2。
C1='Test' C2='Test'
BLEUscore: 1.0
C1='Test' C2='Best'
BLEUscore: 0.2326589746035907
C1='Test' C2='Text'
BLEUscore: 0.2866227639866161
你也可以比较句子的相似度:
C1='It is tough.' C2='It is rough.'
BLEUscore: 0.7348889200874658
C1='It is tough.' C2='It is tough.'
BLEUscore: 1.0
TheFuzz是一个用python实现Levenshtein距离的包,在某些情况下,当你希望两个不同的字符串被认为是相同的时,它带有一些帮助函数来提供帮助。例如:
>>> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
91
>>> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100
注意,difflib。SequenceMatcher只找到最长的连续匹配子序列,这通常不是我们想要的,例如:
>>> a1 = "Apple"
>>> a2 = "Appel"
>>> a1 *= 50
>>> a2 *= 50
>>> SequenceMatcher(None, a1, a2).ratio()
0.012 # very low
>>> SequenceMatcher(None, a1, a2).get_matching_blocks()
[Match(a=0, b=0, size=3), Match(a=250, b=250, size=0)] # only the first block is recorded
寻找两个字符串之间的相似性与生物信息学中成对序列比对的概念密切相关。有许多专门的库,包括生物马拉松。这个例子实现了Needleman Wunsch算法:
>>> from Bio.Align import PairwiseAligner
>>> aligner = PairwiseAligner()
>>> aligner.score(a1, a2)
200.0
>>> aligner.algorithm
'Needleman-Wunsch'
使用biopython或其他生物信息学包比python标准库的任何部分都更灵活,因为有许多不同的评分方案和算法可用。此外,你可以得到匹配的序列来可视化正在发生的事情:
>>> alignment = next(aligner.align(a1, a2))
>>> alignment.score
200.0
>>> print(alignment)
Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-Apple-
|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-|||-|-
App-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-elApp-el
你可以在这个链接下找到大多数文本相似度方法及其计算方法:https://github.com/luozhouyang/python-string-similarity#python-string-similarity 这里有一些例子;
归一化,度量,相似度和距离 (归一化)相似度和距离 距离度量 基于相似度和距离的带状(n-gram) Levenshtein 规范化Levenshtein 加权Levenshtein Damerau-Levenshtein 最佳字符串对齐 Jaro-Winkler 最长公共子序列 度量最长公共子序列 语法 基于瓦(n-gram)的算法 Q-Gram 余弦相似度 Jaccard指数 Sorensen-Dice系数 重叠系数(即Szymkiewicz-Simpson)