如何在Python中获得一个字符串与另一个字符串相似的概率?

我想要得到一个十进制值,比如0.9(意思是90%)等等。最好是标准的Python和库。

e.g.

similar("Apple","Appel") #would have a high prob.

similar("Apple","Mango") #would have a lower prob.

当前回答

TheFuzz是一个用python实现Levenshtein距离的包,在某些情况下,当你希望两个不同的字符串被认为是相同的时,它带有一些帮助函数来提供帮助。例如:

>>> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
    91
>>> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
    100

其他回答

我想你们可能在寻找一种描述字符串之间距离的算法。这里有一些你可以参考的:

汉明距离 Levenshtein距离 Damerau-Levenshtein距离 Jaro-Winkler距离

你可以在这个链接下找到大多数文本相似度方法及其计算方法:https://github.com/luozhouyang/python-string-similarity#python-string-similarity 这里有一些例子;

归一化,度量,相似度和距离 (归一化)相似度和距离 距离度量 基于相似度和距离的带状(n-gram) Levenshtein 规范化Levenshtein 加权Levenshtein Damerau-Levenshtein 最佳字符串对齐 Jaro-Winkler 最长公共子序列 度量最长公共子序列 语法 基于瓦(n-gram)的算法 Q-Gram 余弦相似度 Jaccard指数 Sorensen-Dice系数 重叠系数(即Szymkiewicz-Simpson)

内置的SequenceMatcher在大输入时非常慢,下面是如何用diff-match-patch完成的:

from diff_match_patch import diff_match_patch

def compute_similarity_and_diff(text1, text2):
    dmp = diff_match_patch()
    dmp.Diff_Timeout = 0.0
    diff = dmp.diff_main(text1, text2, False)

    # similarity
    common_text = sum([len(txt) for op, txt in diff if op == 0])
    text_length = max(len(text1), len(text2))
    sim = common_text / text_length

    return sim, diff

这是内置的。

from difflib import SequenceMatcher

def similar(a, b):
    return SequenceMatcher(None, a, b).ratio()

使用它:

>>> similar("Apple","Appel")
0.8
>>> similar("Apple","Mango")
0.0

如上所述,有许多指标可以定义字符串之间的相似性和距离。我将给出我的5美分,通过展示一个Jaccard与Q-Grams相似的例子和一个编辑距离的例子。

from nltk.metrics.distance import jaccard_distance
from nltk.util import ngrams
from nltk.metrics.distance  import edit_distance

Jaccard相似

1-jaccard_distance(set(ngrams('Apple', 2)), set(ngrams('Appel', 2)))

我们得到:

0.33333333333333337

还有苹果和芒果

1-jaccard_distance(set(ngrams('Apple', 2)), set(ngrams('Mango', 2)))

我们得到:

0.0

编辑距离

edit_distance('Apple', 'Appel')

我们得到:

2

最后,

edit_distance('Apple', 'Mango')

我们得到:

5

q - grams上的余弦相似度(q=2)

另一个解决方案是使用textdistance库。我将提供一个余弦相似度的例子

import textdistance
1-textdistance.Cosine(qval=2).distance('Apple', 'Appel')

我们得到:

0.5