如何在Python中获得一个字符串与另一个字符串相似的概率?

我想要得到一个十进制值,比如0.9(意思是90%)等等。最好是标准的Python和库。

e.g.

similar("Apple","Appel") #would have a high prob.

similar("Apple","Mango") #would have a lower prob.

当前回答

出于我的目的,我有自己的quick_ratio(),它比difflib SequenceMatcher的quick_ratio()快2倍,同时提供类似的结果。A和b是字符串:

    score = 0
    for letters in enumerate(a):
        score = score + b.count(letters[1])

其他回答

TheFuzz是一个用python实现Levenshtein距离的包,在某些情况下,当你希望两个不同的字符串被认为是相同的时,它带有一些帮助函数来提供帮助。例如:

>>> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
    91
>>> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
    100

还添加了Spacy NLP库;

@profile
def main():
    str1= "Mar 31 09:08:41  The world is beautiful"
    str2= "Mar 31 19:08:42  Beautiful is the world"
    print("NLP Similarity=",nlp(str1).similarity(nlp(str2)))
    print("Diff lib similarity",SequenceMatcher(None, str1, str2).ratio()) 
    print("Jellyfish lib similarity",jellyfish.jaro_distance(str1, str2))

if __name__ == '__main__':

    #python3 -m spacy download en_core_web_sm
    #nlp = spacy.load("en_core_web_sm")
    nlp = spacy.load("en_core_web_md")
    main()

使用Robert Kern的line_profiler运行

kernprof -l -v ./python/loganalysis/testspacy.py

NLP Similarity= 0.9999999821467294
Diff lib similarity 0.5897435897435898
Jellyfish lib similarity 0.8561253561253562

然而,时间的启示

Function: main at line 32

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
    32                                           @profile
    33                                           def main():
    34         1          1.0      1.0      0.0      str1= "Mar 31 09:08:41  The world is beautiful"
    35         1          0.0      0.0      0.0      str2= "Mar 31 19:08:42  Beautiful is the world"
    36         1      43248.0  43248.0     99.1      print("NLP Similarity=",nlp(str1).similarity(nlp(str2)))
    37         1        375.0    375.0      0.9      print("Diff lib similarity",SequenceMatcher(None, str1, str2).ratio()) 
    38         1         30.0     30.0      0.1      print("Jellyfish lib similarity",jellyfish.jaro_distance(str1, str2))

Textdistance:

TextDistance - python库,用于通过多种算法比较两个或多个序列之间的距离。它有Textdistance

30 +算法 纯python实现 简单的使用 两个以上的序列比较 有些算法在一个类中有多个实现。 可选的numpy使用最高速度。

例二:

import textdistance
textdistance.hamming('test', 'text')

输出:

1

Example2:

import textdistance

textdistance.hamming.normalized_similarity('test', 'text')

输出:

0.75

谢谢,干杯!

Python3.6 + = 没有导入图书馆 在大多数情况下工作良好

在堆栈溢出,当你试图添加一个标签或发布一个问题,它会带来所有相关的东西。这是如此方便,正是我正在寻找的算法。因此,我编写了一个查询集相似度过滤器。

def compare(qs, ip):
    al = 2
    v = 0
    for ii, letter in enumerate(ip):
        if letter == qs[ii]:
            v += al
        else:
            ac = 0
            for jj in range(al):
                if ii - jj < 0 or ii + jj > len(qs) - 1: 
                    break
                elif letter == qs[ii - jj] or letter == qs[ii + jj]:
                    ac += jj
                    break
            v += ac
    return v


def getSimilarQuerySet(queryset, inp, length):
    return [k for tt, (k, v) in enumerate(reversed(sorted({it: compare(it, inp) for it in queryset}.items(), key=lambda item: item[1])))][:length]
        


if __name__ == "__main__":
    print(compare('apple', 'mongo'))
    # 0
    print(compare('apple', 'apple'))
    # 10
    print(compare('apple', 'appel'))
    # 7
    print(compare('dude', 'ud'))
    # 1
    print(compare('dude', 'du'))
    # 4
    print(compare('dude', 'dud'))
    # 6

    print(compare('apple', 'mongo'))
    # 2
    print(compare('apple', 'appel'))
    # 8

    print(getSimilarQuerySet(
        [
            "java",
            "jquery",
            "javascript",
            "jude",
            "aja",
        ], 
        "ja",
        2,
    ))
    # ['javascript', 'java']

解释

compare takes two string and returns a positive integer. you can edit the al allowed variable in compare, it indicates how large the range we need to search through. It works like this: two strings are iterated, if same character is find at same index, then accumulator will be added to a largest value. Then, we search in the index range of allowed, if matched, add to the accumulator based on how far the letter is. (the further, the smaller) length indicate how many items you want as result, that is most similar to input string.

出于我的目的,我有自己的quick_ratio(),它比difflib SequenceMatcher的quick_ratio()快2倍,同时提供类似的结果。A和b是字符串:

    score = 0
    for letters in enumerate(a):
        score = score + b.count(letters[1])