如何在Python中获得一个字符串与另一个字符串相似的概率?
我想要得到一个十进制值,比如0.9(意思是90%)等等。最好是标准的Python和库。
e.g.
similar("Apple","Appel") #would have a high prob.
similar("Apple","Mango") #would have a lower prob.
如何在Python中获得一个字符串与另一个字符串相似的概率?
我想要得到一个十进制值,比如0.9(意思是90%)等等。最好是标准的Python和库。
e.g.
similar("Apple","Appel") #would have a high prob.
similar("Apple","Mango") #would have a lower prob.
当前回答
BLEUscore
BLEU,即双语评估替补,是一个用于比较的分数 文本到一个或多个参考译文的候选翻译。 完全匹配的结果是1.0,而完全不匹配的结果是1.0 结果得分为0.0。 虽然它是为翻译而开发的,但也可以用来评估文本 为一套自然语言处理任务生成。
代码:
import nltk
from nltk.translate import bleu
from nltk.translate.bleu_score import SmoothingFunction
smoothie = SmoothingFunction().method4
C1='Text'
C2='Best'
print('BLEUscore:',bleu([C1], C2, smoothing_function=smoothie))
示例:通过更新C1和C2。
C1='Test' C2='Test'
BLEUscore: 1.0
C1='Test' C2='Best'
BLEUscore: 0.2326589746035907
C1='Test' C2='Text'
BLEUscore: 0.2866227639866161
你也可以比较句子的相似度:
C1='It is tough.' C2='It is rough.'
BLEUscore: 0.7348889200874658
C1='It is tough.' C2='It is tough.'
BLEUscore: 1.0
其他回答
TheFuzz是一个用python实现Levenshtein距离的包,在某些情况下,当你希望两个不同的字符串被认为是相同的时,它带有一些帮助函数来提供帮助。例如:
>>> fuzz.ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
91
>>> fuzz.token_sort_ratio("fuzzy wuzzy was a bear", "wuzzy fuzzy was a bear")
100
还添加了Spacy NLP库;
@profile
def main():
str1= "Mar 31 09:08:41 The world is beautiful"
str2= "Mar 31 19:08:42 Beautiful is the world"
print("NLP Similarity=",nlp(str1).similarity(nlp(str2)))
print("Diff lib similarity",SequenceMatcher(None, str1, str2).ratio())
print("Jellyfish lib similarity",jellyfish.jaro_distance(str1, str2))
if __name__ == '__main__':
#python3 -m spacy download en_core_web_sm
#nlp = spacy.load("en_core_web_sm")
nlp = spacy.load("en_core_web_md")
main()
使用Robert Kern的line_profiler运行
kernprof -l -v ./python/loganalysis/testspacy.py
NLP Similarity= 0.9999999821467294
Diff lib similarity 0.5897435897435898
Jellyfish lib similarity 0.8561253561253562
然而,时间的启示
Function: main at line 32
Line # Hits Time Per Hit % Time Line Contents
==============================================================
32 @profile
33 def main():
34 1 1.0 1.0 0.0 str1= "Mar 31 09:08:41 The world is beautiful"
35 1 0.0 0.0 0.0 str2= "Mar 31 19:08:42 Beautiful is the world"
36 1 43248.0 43248.0 99.1 print("NLP Similarity=",nlp(str1).similarity(nlp(str2)))
37 1 375.0 375.0 0.9 print("Diff lib similarity",SequenceMatcher(None, str1, str2).ratio())
38 1 30.0 30.0 0.1 print("Jellyfish lib similarity",jellyfish.jaro_distance(str1, str2))
包装距离包括Levenshtein距离:
import distance
distance.levenshtein("lenvestein", "levenshtein")
# 3
这是我想到的:
import string
def match(a,b):
a,b = a.lower(), b.lower()
error = 0
for i in string.ascii_lowercase:
error += abs(a.count(i) - b.count(i))
total = len(a) + len(b)
return (total-error)/total
if __name__ == "__main__":
print(match("pple inc", "Apple Inc."))
Textdistance:
TextDistance - python库,用于通过多种算法比较两个或多个序列之间的距离。它有Textdistance
30 +算法 纯python实现 简单的使用 两个以上的序列比较 有些算法在一个类中有多个实现。 可选的numpy使用最高速度。
例二:
import textdistance
textdistance.hamming('test', 'text')
输出:
1
Example2:
import textdistance
textdistance.hamming.normalized_similarity('test', 'text')
输出:
0.75
谢谢,干杯!